Geologica Belgica

1374-8505 2034-1954

 

Factor de impacto: 1.8 (2022)

ya que 05 febrero 2011 :
Vista(s): 751 (6 ULiège)
Descargar(s): 428 (0 ULiège)
print        
Griet VERHAERT, Philippe MUCHEZ, Eddy KEPPENS & Manuel SINTUBIN

Fluid impact and spatial and temporal evolution of normal faulting in limestones. A case study in the Burdur-Isparta region (SW Turkey)

(volume 12 (2009) — number 1-2)
Article
Open Access

Documento adjunto(s)

Anexidades

Mots-clés : stable isotopes, KEYWORDS: fault permeability, fault zone architecture, fluid flow, normal fault, SW Turkey

Abstract

ABSTRACT. The development of normal faults in carbonates in upper-crustal conditions (< 1-3 km) is a very complex process, because of the interaction of mechanical and chemical processes. This paper investigates the effect of the architecture of normal faults on fluid flow at different depths. This study has been performed on a well-exposed normal fault complex, i.e. the Sarikaya fault complex, in the Burdur area, situated ~120 km north of Antalya (SW Turkey). The particular outcrop allowed studying fault zone architecture and fault-related precipitates at different structural levels over a vertical distance of ~250m.

The earliest stage of normal fault zone development occurs with the upward propagation of a neoformed fault. Seismic deformation is responsible for the development of a low permeable stylobreccia at depth. During fault movement, permeability is greatly enhanced at the fault plane contact. This permeability enhancement causes a fluid-pressure differential responsible for co-seismic, focused fluid flow parallel with the fault plane. Calcites on the fault plane and in veins in the damage zone precipitated from rock buffered fluids (13C = -0.1 to +2.5‰ V-PDB, 18O = -4.0 to -0.7‰). During repetitive increments of seismic slip, permeability is renewed at the fault plane contact and fluids are expelled. These increments of seismic slip lead to fault propagation. This fault propagation is accompanied by the formation of a fault precursor breccia ahead of the fault tip by intense localized fragmentation and brecciation of the adjacent shatter zone. This leads to a cohesive breccia where confining pressure is still high and an incohesive breccia near the surface. The cohesive damage zone acts as a combined conduit-barrier system and a more dispersed, co-seismic fluid flow is present near the fault plane contact. The near-surface, incohesive damage zone is characterised by a high permeability, which leads to a highly dispersed fluid flow. Meteoric water can easily infiltrate which leads to static fluid interaction with the normal fault.

Later propagation of a fault plane through its fault-precursor breccia belt results in the deformation concentrated along the fault plane and the evolution of the fault-precursor into a fine gouge or attrition breccia. Once a slip plane reaches the free surface by propagating through its own (in)cohesive breccia belt, co-seismic deformation is restricted to a relatively narrow zone of attrition. In the case of the cohesive damage zone, fluid flow is enhanced adjacent to the slip plane. The fault related fluid is in equilibrium.  

Para citar este artículo

Griet VERHAERT, Philippe MUCHEZ, Eddy KEPPENS & Manuel SINTUBIN, «Fluid impact and spatial and temporal evolution of normal faulting in limestones. A case study in the Burdur-Isparta region (SW Turkey)», Geologica Belgica [En ligne], number 1-2, volume 12 (2009), 59-73 URL : http://popups.ulg.be/1374-8505/index.php?id=2674.

Acerca de: Griet VERHAERT

Geodynamics and Geofluids Research Group, Afdeling Geologie, Katholieke Universiteit Leuven, Celestijnenlaan 200E, B-3001 Leuven, Belgium,

Acerca de: Philippe MUCHEZ

Geodynamics and Geofluids Research Group, Afdeling Geologie, Katholieke Universiteit Leuven, Celestijnenlaan 200E, B-3001 Leuven, Belgium, e-mail: philippe.muchez@geo.kuleuven.be

Acerca de: Eddy KEPPENS

Department of Geology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium

Acerca de: Manuel SINTUBIN

Geodynamics and Geofluids Research Group, Afdeling Geologie, Katholieke Universiteit Leuven, Celestijnenlaan 200E, B-3001 Leuven, Belgium,