SUR DES CONGRUENCES D'UN ENSEMBLE ORDONNÉ. APPLICATION À L'ÉTUDE DU LATTIS DES SOUS-ALGÈBRES D'UN DEMI-LATTIS DE BROUWER FINI
L. VRANCKEN-MAWET,
Institut de Mathématique, Université de Liège, 15 avenue des Tilleuls, B-4000 Liège, Belgique.
Abstract
In this paper, we investigate the subalgebra lattice of a finite Brouwerian semilattice. Among other things, we prove that this lattice is always atomistic, lower semimodu1ar and sectionally complemented. We also characterize those finite Brouwerian semilattices whose subalgebra lattice is dually atomistic, relative1y complemented, modular, semimodular, Boolean, distributive or unicomp1emented. To achieve these results, we use the duality studied by Köhler between finite Brouwerian semilattices and finite posets.
Pour citer cet article
L. VRANCKEN-MAWET, «SUR DES CONGRUENCES D'UN ENSEMBLE ORDONNÉ. APPLICATION À L'ÉTUDE DU LATTIS DES SOUS-ALGÈBRES D'UN DEMI-LATTIS DE BROUWER FINI», Bulletin de la Société Royale des Sciences de Liège [En ligne], Volume 51 - Année 1982, Numéro 5 - 8, 174 - 187 URL : http://popups.ulg.be/0037-9565/index.php?id=1369.