
	B	A
	S	E Biotechnol. Agron. Soc. Environ.	2013	17(4),	644-650     Focus on:

Role	of	satellite	RNAs	in	cucumber	mosaic	virus-host	
plant	interactions.	A	review
Kouakou	Théodore	Kouadio	(1,	2),	Caroline	De	Clerck	(1),	Thérèse	Atcham	Agneroh	(2),	
Olivier	Parisi	(1),	Philippe	Lepoivre	(1),	Haïssam	Jijakli	(1)
(1)	Univ.	Liege	-	Gembloux	Agro-Bio	Tech.	Unité	de	Phytopathologie.	Passage	des	Déportés,	2.	B-5030	Gembloux	
(Belgium).	E-mail:	tkouadiothed@yahoo.fr		
(2)	Institut	National	Polytechnique	Félix	Houphouet	Boigny.	Laboratoire	de	Phytopathologie	et	de	Biologie	végétale.	
Département	Agriculture	et	Ressources	Animales.	BP	1313.	CI-Yamoussoukro	(Côte	d’Ivoire).

Received	on	February	27,	2013;	accepted	on	July	30,	2013.

Subviral	non-coding	RNA	molecules,	known	as	satellite	RNAs	(satRNAs),	are	often	associated	with	cucumber	mosaic	virus	
(CMV).	These	satRNAs	require	a	helper	virus	(CMV	in	this	case)	for	their	replication,	encapsidation	and	transmission.	They	
modify	CMV	pathogenicity	by	either	attenuating	disease	symptoms	or	by	exacerbating	them.	This	effect	could	be	due	either	to	
competition	between	a	helper	virus	and	satRNAs	for	replication,	or	to	specific	satRNA	sequences	or	secondary	structures.	The	
type	of	host	plant	and	the	CMV	strain	also	affect	the	behavior	of	satRNAs.	Recent	studies	have	shown	that	satRNA	replication	
is	associated	with	the	production	of	satRNA-derived	small	RNAs	of	21-25	nucleotides	in	length,	which	play	a	key	role	in	RNA	
silencing	and	could	explain	differences	in	CMV	symptom	severity.	This	review	highlights	the	current	understanding	and	recent	
advances	in	relation	to	satRNA-mediated	disease	symptoms	in	CMV-infected	plants.
Keywords.	Cucumovirus,	RNA,	pathogenicity.

Synthèse bibliographique : rôle de l’ARN satellite dans les interactions plantes-virus de la mosaïque du concombre.	
Un	ARN	subviral	 sans	 fonction	 codante	 désigné	ARN	satellite	 (ARNsat)	 est	 souvent	 associé	 au	virus	 de	 la	mosaïque	du	
concombre	 (CMV).	Cet	ARNsat	 a	 besoin	 de	 son	 virus	 assistant	 (dans	 ce	 cas	 précis,	 le	CMV)	 pour	 sa	 réplication	 et	 son	
encapsidation	et	peut,	dans	certains	cas,	modifier	les	symptômes	causés	par	le	CMV	soit	en	les	atténuant,	soit	en	les	aggravant.	
Plusieurs	études	ont	montré	que	cet	effet	pourrait	être	dû	à	une	compétition	entre	l’ARNsat	et	le	CMV	pour	la	réplication.	
Parallèlement,	certains	auteurs	ont	révélé	que	cette	pathogénicité	de	l’ARNsat	serait	liée	à	des	séquences	primaires	spécifiques	
ou	à	sa	structure	secondaire,	bien	que	cet	effet	soit	aussi	fonction	de	la	plante	hôte	infectée	et	de	la	souche	du	virus	assistant.	
Cependant,	 tout	 récemment,	 il	 a	 été	montré	 que	 la	 réplication	 des	ARNsat	 était	 associée	 à	 la	 production	 de	 petits	ARNs	
d’environ	21-25	nucléotides	dérivant	de	ces	ARNsat	et	connus	pour	jouer	un	rôle	dans	le	phénomène	silencing	de	l’ARN,	un	
mécanisme	de	défense	de	la	plante	primordial	dans	l’extinction	des	gènes	viraux.	Cette	revue	fait	le	point	sur	les	connaissances	
actuelles	et	la	compréhension	des	mécanismes	mis	en	jeu	par	les	ARNsat	pour	moduler	l’expression	des	symptômes	chez	les	
plantes	hôtes	infectées	par	le	CMV.
Mots-clés.	Cucumovirus,	ARN,	pouvoir	pathogène.

1. INTRODUCTION

Cucumber	mosaic	virus	 (CMV),	 the	 type	member	of	
the	 genus	Cucumovirus	 in	 the	 family	 Bromoviridae,	
has	 isometric	 particles	 of	 approximately	 29	nm	 in	
diameter	 (Palukaitis	 et	 al.,	 2003).	 CMV	 is	 one	 of	
the	 most	 widespread	 plant	 viruses	 in	 the	 world	 and	
it	 has	 an	 extensive	 host	 range.	 CMV	 infects	 about	
1,200	plant	species	and	more	than	75	aphid	species	are	
capable	 of	 transmitting	 the	 virus	 in	 a	 non-persistent	
manner	 (Palukaitis	 et	 al.,	 1992;	 Palukaitis	 et	 al.,	

2003).	 Numerous	 CMV	 strains	 have	 been	 described	
and	 classified	 into	 two	 major	 subgroups	 based	 on	
serological	 relationships	 and	 nucleotide	 sequence	
similarities:	 CMV	I	 and	 CMV	II	 (Palukaitis	 et	 al.,	
1992).	 Following	 phylogenetic	 analyses,	 subgroup	I	
was	further	divided	into	groups	IA	and	IB	(Roossinck	
et	al.,	1999).	CMV	has	a	tripartite	genome	of	positive-
sense	single-stranded	RNAs,	termed	RNA1,	RNA2	and	
RNA3.	It	also	contains	subgenomic	RNAs,	designated	
RNA4	and	RNA4A	(Palukaitis	et	al.,	2003).	RNA1	and	
RNA2	encode	proteins	 required	for	CMV	replication	
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and	 virulence	 (proteins	1a	 and	 2a,	 respectively)	
(Kang	 et	 al.,	 2012;	Mochizuki	 et	 al.,	 2012).	 RNA2	
also	 encodes	 protein	2b,	 which	 is	 translated	 from	
subgenomic	RNA4A	(Du	Z.Y.	et	al.,	2007;	Mochizuki	
et	al.,	2012).	Protein	2b	also	acts	as	a	viral	suppressor	
of	RNA	silencing	and	plays	a	role	in	virus	transport	
(Zhang	et	al.,	2006;	Du	Z.Y.	et	al.,	2007;	Mochizuki	
et	al.,	2012).	RNA3	encodes	both	a	protein	involved	
in	 movement	 (MP)	 and	 a	 coat	 protein	 (CP).	 This	
CP	 is	 translated	 from	 subgenomic	RNA4	 and	 plays	
a	 role	 in	cell-to-cell	 and	 systemic	movement.	 It	has	
also	been	implicated	in	symptom	modulation	but	it	is	
not	 required	 for	 virus	 replication	 (Mochizuki	 et	 al.,	
2012).

In	 addition	 to	 genomic	 and	 subgenomic	 RNAs,	
some	CMV	strains	encapsidate	subviral	RNAs	known	
as	 satellite	RNAs	 (satRNAs),	which	differ	 from	 the	
CMV	genome	by	being	dispensable	for	normal	CMV	
replication	 (Simon	 et	 al.,	 2004).	Satellite	RNAs	 are	
linear	RNA	molecules	of	332	to	405	nucleotides	(nt)	
without	any	apparent	functional	open	reading	frames	
(ORFs)	(Palukaitis	et	al.,	2003).	SatRNA	replication	
is	 totally	dependent	on	viral	 replicase	activity	 (Gal-
On	et	al.,	1995).	SatRNAs	can	have	different	effects	
on	 CMV	 replication,	 pathogenesis,	 and	 symptom	
expression,	depending	on	the	host	plant	and	the	CMV	
strain	(Garcia-Arenal	et	al.,	1999).	

Viral	infections	generally	cause	disease	symptoms	
by	 interfering	 with	 the	 host	 plant’s	 metabolism.	
Several	 studies	 have	 demonstrated	 that	 RNA	
silencing	in	plants	limits	the	accumulation	of	foreign	
RNA	species	 (Qu,	2010;	Zhu	et	al.,	2012).	The	first	
biological	function	established	for	RNA	silencing	is	the	
production	of	small	RNAs	that	are	21-25	nucleotides	
long	and	can	regulate	gene	expression	in	a	sequence-
specific	 manner	 (Zhu	 et	 al.,	 2012).	 RNA	 silencing	
can	 reduce	 the	expression	of	 specific	genes	 through	
post-transcriptional	and	transcriptional	gene	silencing	
(Zhu	et	al.,	2012).	Post-transcriptional	RNA	silencing	
is	mediated	by	short	interfering	RNAs	(siRNAs)	and	
by	 microRNAs	 (miRNAs)	 (Jones-Rhoades	 et	 al.,	
2006;	Mallory	et	al.,	2006).	Several	characteristics	are	
distinct	between	the	two	small	RNA	classes,	although	
the	main	fundamental	difference	is	the	nature	of	their	
precursor:	siRNAs	are	processed	from	long,	double-
stranded	(ds)RNAs,	whereas	miRNAs	are	encoded	in	
the	plant	genome	and	processed	from	single-stranded	
RNA	molecules	 that	 include	an	imperfect	stem-loop	
secondary	structure	(Jones-Rhoades	et	al.,	2006;	Qu,	
2010).	 In	 order	 to	 counter	 this	 defense	mechanism,	
most	 plant	 viruses	 encode	 for	 suppressors	 of	 host	
RNA	 silencing	 (Burgyan	 et	 al.,	 2011).	 SatRNAs	
associated	 with	 helper	 viruses	 are	 also	 resistant	 to	
RNA	silencing-mediated	degradation,	thus	suggesting	
a	possible	role	of	this	mechanism	in	the	pathogenicity	
of	these	subviral	RNAs	(Wang	et	al.,	2004).

In	 this	 review,	 the	 role	 of	 satRNAs	 in	CMV-host	
plant	 interactions	 is	 examined	 in	 the	 light	 of	 recent	
advances	in	research.	Major	emphasis	is	placed	on	the	
effect	of	satRNAs	on	the	components	of	CMV	helper	
viruses	and	their	pathogenicity,	along	with	the	potential	
interference	between	satRNAs	and	RNA	silencing.	

2. ORIGIN AND DIVERSITY OF satRNAS

The	origin	of	satRNAs	remains	enigmatic	and	subject	
to	 much	 speculation	 (Roossinck	 et	 al.,	 1992;	 Simon	
et	al.,	2004).	To	date,	no	significant	sequence	identity	
has	 been	 reported	 between	 satRNAs	 and	 the	 CMV	
helper	 virus	 and	 no	 complete	 satRNA	 sequence	 has	
been	found	in	any	plant	genome	(Simon	et	al.,	2004;	
Hajimorad	 et	 al.,	 2009).	 Several	 studies	 show	 that	
repeated	infections	by	naturally	occurring	CMV	strains	
under	 experimental	 conditions	 may	 occasionally	
result	 in	 the	 “spontaneous”	 emergence	 of	 satRNAs	
(Palukaitis	 et	 al.,	 1992;	 Roossinck	 et	 al.,	 1992).	 By	
contrast,	other	studies	involving	eleven	serial	transfers	
of	 CMV	 RNA	 transcripts	 on	Nicotiana tabacum	 cv.	
‘Ky	14’	did	not	result	 in	emergence	of	any	satRNAs,	
whereas	 a	 satRNA	 was	 detected	 after	 at	 least	 eight	
successive	 transfers	 of	 other	 CMV	 strains	 under	 the	
same	conditions	(Hajimorad	et	al.,	2009).	Furthermore,	
certain	CMV	strains	were	found	unable	to	support	the	
replication	of	satRNAs	in	any	of	the	host	plants	tested	
(McGarvey	et	al.,	1995;	Yamaguchi	et	al.,	2005).	

More	 than	 100	satRNAs	 associated	 with	 CMV	
isolates	 originating	 from	 geographically	 different	
countries	 and	 host	 plants,	 of	 which	 most	 were	
Solanaceae	 plants	 such	 as	 tomato	 and	 tobacco,	 have	
been	 characterized	 by	 sequencing	 and	 nucleotide	
sequences	were	 deposited	 in	 the	National	Center	 for	
Biotechnology	Information	(NCBI)	GenBank	database.	
These	CMV	isolates	can	be	classified	into	at	least	three	
groups	depending	on	whether	the	disease	symptoms	are	
unaffected,	exacerbated	or	attenuated	by	the	presence	
of	satRNA	on	tomato	indicator	plants	(Collmer	et	al.,	
1992;	Garcia-Arenal	et	al.,	1999).	CMV	satRNAs	have	
been	found	in	association	with	both	CMV	subgroups	I	
and	II	(Atencio	et	al.,	1997;	Mavrodieva	et	al.,	1998).

3. CMV satRNA SEQUENCES AND 
SECONDARY STRUCTURES INVOLVED IN 
SYMPTOM EXPRESSION 

CMV	 satRNAs	 can	 differently	 affect	 symptom	
expression	depending	on	the	host	plant.	For	example,	
D	satellite	 RNA	 (D-satRNA)	 induces	 necrosis	 in	
infected	 tomato	 plants	 in	 the	 presence	 of	 CMV	 but	
attenuates	symptoms	in	tobacco	(Garcia-Arenal	et	al.,	
1999).	 Likewise,	 CMV-PepY-satRNA	 isolated	 from	
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pepper	 induces	 chlorosis	 in	 hot	 pepper,	 but	 not	 in	
tobacco	or	tomato	(Choi	et	al.,	2011).	Strain	K8-satRNA	
attenuates	symptoms	in	tobacco	and	tomato	but	has	no	
effect	on	symptoms	in	squash.	In	some	cases,	symptom	
expression	 can	 change	 in	 the	 same	 host.	 A	 CMV	
satRNA	that	causes	very	mild	symptoms	on	many	plant	
species	causes	more	severe	symptoms	on	several	hosts	
after	serial	inoculations	(Alvarez	et	al.,	2003).	

Several	authors	hypothesized	the	action	of	specific	
satRNA	 sequences,	 the	 competitiveness	 of	 helper	
virus	 components,	 and	 the	 misregulation	 of	 host	
plant	 factors	 in	symptom	expression.	Many	satRNAs	
inducing	necrosis,	chlorosis	or	bright	yellow	mosaic	as	
well	as	satRNAs	carrying	disease	attenuation	domains	
were	 identified	 (Collmer	 et	 al.,	 1992;	 Garcia-Arenal	
et	al.,	1999;	Palukaitis	et	al.,	2003;	Choi	et	al.,	2011).	
However,	 the	 link	 between	 chlorosis	 symptoms	 and	
the	chlorosis-domain	 is	not	obvious	because	 in	some	
cases	satRNA	symptom	can	occur	either	in	tobacco	or	
in	tomato,	but	not	in	both	plant	species	(Garcia-Arenal	
et	al.,	1999).	

Several	 authors	 have	 studied	 the	 sequences	 of	
satRNA	 variants	 that	 confer	 the	 ability	 to	 induce	
necrosis	 on	 tomato	 (Devic	 et	 al.,	 1990;	 Sleat	 et	 al.,	
1994).	Necrosis	 induction	has	been	shown	to	depend	
on	a	domain	that	maps	within	
the	 3’	 half	 of	 satRNAs,	
while	 sequences	 outside	
this	 domain	 could	 also	
influence	necrosis	extension	
(Palukaitis	 et	 al.,	 2003).	
The	 necrogenic	 satRNA	
variants	 for	 tomato	 contain	
the	 “consensus”	 sequence:	
GA-GCUAAGGCUUA---
UGCUAUGCUGAU	(Devic	
et	 al.,	 1990).	 This	 type	 of	
satRNA,	 which	 induces	
systemic	 necrosis	 in	 tomato	
plants,	 does	 not	 usually	
cause	 similar	 symptoms	
in	 other	 plant	 species	
(Garcia-Arenal	 et	 al.,	 1999;	
Betancourt	 et	 al.,	 2011).	 In	
fact,	 studies	 of	 satRNAs	
nucleotide	 sequences	
failed	 to	 fully	 explain	 the	
mechanism	 involved	 in	
satRNA	 pathogenicity.	 In	
addition,	 Y-satRNA	 has	
been	reported	as	necrogenic	
when	associated	with	CMV	
strain	Y	 (CMV-Y)	 but	 not	
with	 CMV	 strain	O	 (CMV-
O)	 and	 the	 occurrence	 of	
necrosis	 also	 depends	 on	

the	 tomato	 cultivar	 (Collmer	 et	 al.,	 1992).	As	 there	
is	 no	 functional	 ORF	 in	 satRNAs,	 their	 biological	
properties	might	be	related	to	their	secondary	structure	
(Figure 1),	 among	 other	 factors	 (Garcia-Arenal	
et	 al.,	 1999;	 Alvarez	 et	 al.,	 2003).	 Several	 studies	
effectively	 predict	 that	 CMV	 satRNA	 is	 expected	 to	
have	a	high	degree	of	secondary	structure,	with	about	
50%	base	 pairing	 (Rodriguez-Alvarado	 et	 al.,	 1997).	
Nevertheless,	 in	 some	 cases,	 primary	 and	 secondary	
structure	 alterations	 of	 some	 CMV	 satRNAs	 do	 not	
induce	 differences	 in	 pathogenicity	 (Garcia-Arenal	
et	 al.,	 1999).	 The	 effects	 of	 satRNAs	 on	 their	 host	
plants	might	be	related	not	only	to	satRNA	sequences	
but	also	to	interactions	with	the	helper	strain	and	host	
factors	(Betancourt	et	al.,	2011).	

4. EFFECT OF satRNAS ON THE 
ACCUMULATION AND PATHOGENICITY OF 
CMV 

The	 presence	 of	 CMV-associated	 satRNAs	 usually	
reduces	the	titer	of	the	helper	virus	(Escriu	et	al.,	2000;	
Palukaitis	et	al.,	2003;	Liao	et	al.,	2007).	This	reduction	
depends	 on	 the	 CMV	 isolate	 and	 the	 host	 plant	

a b

Figure 1.	Predicted	secondary	structure	of	two	CMV	satRNAs	—	Structure secondaire de 
deux ARNsats du CMV (Alvarez	et	al.,	2003).

a:	CMV	satRNAP1-1:	cucumber	mosaic	virus	P1-1	satellite	RNA,	a	non-necrogenic	satellite	—	
ARN satellite P1-1 du virus de la mosaïque du concombre, un ARN satellite non nécrogène;	b:	
CMV	satRNAP1-2:	cucumber	mosaic	virus	P1-2	satellite	RNA,	a	necrogenic	satellite	—	ARN 
satellite P1-2 du virus de la mosaïque du concombre, un ARN satellite nécrogène.
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(Jacquemond	 et	 al.,	 1982;	Cillo	 et	 al.,	 2007).	 Some	
reports	 suggest	 that	 the	 effect	 of	 satRNA	 could	 be	
related	to	the	competitiveness	for	replication	between	
the	helper	virus	and	satRNA	(Wu	et	al.,	1995).	Gal-
On	et	al.	(1995)	revealed	that	in	tobacco	and	zucchini	
squash	 plants,	 satRNA	 affects	 the	 levels	 of	 RNA1,	
and	to	a	lesser	extent	of	RNA2,	and	of	their	encoded	
proteins,	that	are	components	of	the	CMV	replicase.	
In	 other	 studies,	 satRNAs	 reduced	 the	 expression	
levels	of	the	coat	protein	gene	(Shang	et	al.,	2009).	

The	 attenuation	 of	 symptoms	observed	 in	CMV-
infected	 plants	 was	 suspected	 to	 result	 from	 low	
accumulation	 of	 CMV	 genomic	 RNAs	 (Liao	 et	 al.,	
2007).	Nevertheless	the	reduced	CMV	accumulation	
in	 the	 presence	 of	 satRNA	 is	 not	 always	 associated	
with	 satRNA-mediated	 symptom	 attenuation	 since	
satRNAs	 that	 induce	 necrosis	 in	 tomato	 plants	 also	
reduce	 CMV	 accumulation	 (Escriu	 et	 al.,	 2000).	
Furthermore,	 satRNAs	 that	 exacerbate	 symptoms	
caused	 a	 higher	 reduction	 of	 CMV	 accumulation	
levels	 than	 satRNAs	 that	 attenuated	 them	 (Escriu	
et	al.,	2000;	Cillo	et	al.,	2007;	Feng	et	al.,	2012).	

Several	authors	investigated	the	effect	of	satRNAs	
on	 CMV	 genomic	 RNAs	 and	 especially	 on	 the	
expression	 of	 the	 protein	2b.	 Liao	 et	 al.	 (2007)	 and	
Chen	 (2010)	 showed	 that	 satRNA	 lowered	 CMV	
RNA	accumulation,	leading	to	a	significant	decrease	
in	 protein	2b,	 and	 that	 deleting	 the	 2b	gene	 had	 the	
same	 effect	 on	 genomic	 RNA	 replication	 and/or	
accumulation	 as	 the	 addition	 of	 satRNAs.	As	 these	
authors,	 Hou	 et	 al.	 (2011)	 found	 that	 SD-satRNA	
attenuated	 the	 yellowing	 phenotype	 induced	 by	
SD-CMV	 in	 infected	 Nicotiana benthamiana	
and	 Arabidopsis	 plants	 in	 correlation	 with	 low	
accumulation	 levels	 of	 2b-coding	 subgenomic	
RNA4A.	

SatRNAs	 could	 serve	 as	 a	 target	 for	 RNA	
silencing,	 thus	 playing	 a	 role	 in	 protecting	 helper	
RNAs,	 especially	 subgenomic	 RNA4A	 (Hou	 et	 al.,	
2011).	Wang	et	al.	(2004)	succeeded	in	reducing	the	
symptoms	caused	by	the	Y	satellite	of	CMV	using	a	
silencing	 suppressor	 that	prevents	RNA	silencing	 in	
tobacco.	These	data	provided	evidence	that	silencing	
is	probably	involved	in	the	pathogenicity	of	satRNAs,	
as	demonstrated	for	viroids	(Wang	et	al.,	2004).	

5. EFFECTS OF CMV satRNAS ON RNA 
SILENCING 

SatRNAs	 interfere	 with	 the	 pathogenicity	 of	 helper	
viruses	 and	 the	 RNA-silencing	 pathways	 of	 host	
plants	 even	 though	RNA	silencing	 also	plays	 a	 role	
in	the	pathogenicity	of	satRNAs	(Wang	et	al.,	2004).	
There	is	a	limited	number	of	reports	on	the	pathways	
used	 by	 satRNAs	 to	 interfere	 with	 RNA	 silencing.	

Nevertheless,	siRNA	and	miRNA	pathways	appear	to	
be	involved	(Zhu	et	al.,	2011;	Feng	et	al.,	2012).

In	plants,	RNA	silencing	involving	gene	suppression	
requires	 key	 components	 such	 as	Argonaute	 proteins	
(AGOs),	Dicer	or	Dicer-like	(DCLs)	and	RNA-directed	
RNA	 polymerases	 (RDRs)	 (Jones-Rhoades	 et	 al.,	
2006).	 The	 CMV	 protein	2b	 has	 been	 demonstrated	
to	 either	 inhibit	 the	production	of	RDRs	 (RDR1	and	
RDR6)	 dependant	 viral	 siRNAs	 (Diaz-Pendon	 et	 al.,	
2007;	Wang	et	al.,	2010)	or	inhibit	the	cleavage	activity	
of	AGO1	(Zhang	et	al.,	2006).	

Hou	 et	 al.	 (2011)	 showed	 that	 satRNAs	 are	
targeted	by	RNA	silencing,	resulting	in	reduced	CMV	
RNA-derived	 siRNA	production.	 Furthermore,	 lower	
levels	of	CMV-derived	siRNAs	are	detected	in	plants	
infected	with	 SD-satRNA	 in	 the	 presence	 as	well	 as	
in	 the	 absence	 of	 the	 2b	protein,	 whereas	 abundant	
SD-satRNA-derived	siRNAs	are	detected	in	the	same	
conditions.	 Previous	 works	 indicate	 that	 DCL4,	 an	
RNase	 III-like	 enzyme,	was	 the	primary	producer	 of	
SD-satRNA-derived	 siRNAs	 (Du	 Q.S.	 et	 al.,	 2007).	
Likewise,	a	virus-derived	siRNA	targeting	viral	RNAs	
triggers	 the	 host	 RDR6-mediated	 degradation	 of	
viral	RNAs	(Zhu	et	al.,	2011).	Furthermore,	satRNA-
derived	 siRNAs	 could	 be	 associated	 with	 different	
AGO	 proteins	 in	 host	 plants	 (Zhu	 et	 al.,	 2011).	 In	
fact,	satRNA-derived	siRNAs	could	play	an	important	
biological	 function	 in	 interactions	 between	 hosts,	
viruses,	and	satRNAs	 to	determine	 the	final	outcome	
of	viral	infection	(Zhu	et	al.,	2011).	In	some	cases,	the	
production	of	 satRNA-derived	 siRNAs	 could	 lead	 to	
attenuated	CMV-induced	symptoms	(Zhu	et	al.,	2011).	

In	order	 to	 assess	 the	effect	of	 satRNAs	on	RNA	
silencing,	Feng	et	al.	(2012)	analyzed	the	interference	
of	a	benign	satRNA	(satRNAYn12)	and	an	aggressive	
satRNA	 (satRNAT1)	 with	 the	 miRNA-mediated	
regulation	 of	 gene	 expression	 in	 tomato.	 Infection	
by	 CMV-Fny	 and	 CMV-Fny-satRNAT1	 significantly	
altered	the	normal	miRNA-mediated	gene	expression	
regulation	 in	 host	 plants	 whereas	 the	 ability	 of	
CMV-Fny	 to	 interfere	 with	 miRNA	 pathways	 was	
dramatically	reduced	when	satYn12	was	added	(Feng	
et	al.,	2012).	These	results	showed	a	differential	effect	
of	 two	 distinct	 satRNAs	 on	 miRNA-regulated	 gene	
expression	 in	 tomato.	 On	 one	 hand,	 the	 complex	
mechanism	 whereby	 satRNAs	 participate	 in	 CMV-
tomato	 interactions	 suggests	 that	 disease	 symptom	
severity	 is	 to	 some	 extent	 positively	 correlated	 with	
interference	 of	 miRNA	 pathways	 in	 tomato	 but,	 on	
the	 other	 hand,	 attenuated	 disease	 symptoms	 can	
be	 attributed	 to	 satRNAs	 reducing	 interference	 of	
protein	2b	with	miRNA	(Cillo	et	al.,	2009;	Feng	et	al.,	
2012)	or	siRNA	(Zhu	et	al.,	2011)	pathways.	

To	 further	 analyze	 the	 mechanisms	 of	 satRNA-
mediated	 symptom	 expression,	 research	 teams	 from	
two	 different	 laboratories	 demonstrated	 that	 the	
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sequence	 complementarity	 between	 CMV-Y-satRNA	
(Y-satRNA)	 and	 a	 chlorophyll	 biosynthetic	 gene	
(Chll)	was	essential	for	inducing	yellow	symptoms	on	
tobacco	or	pepper	(Shimura	et	al.,	2011;	Smith	et	al.,	
2011).	These	authors	demonstrated	that	the	yellowing	
symptoms	were	a	result	of	Y-satRNA	siRNA-mediated	
RNA	 silencing	 of	 the	 Chll	 gene,	 thus	 leading	 to	 the	
inhibition	of	chlorophyll	biosynthesis	(Shimura	et	al.,	
2011;	 Smith	 et	 al.,	 2011).	 Previous	 studies	 revealed	
that	the	same	yellow	phenotype	was	observed	when	the	
Chll	genes	of	tobacco	or	cotton	were	targeted	by	virus-
induced	 gene	 silencing	 (Petersen	 et	 al.,	 2005;	 Tuttle	
et	al.,	2008).	The	Chll	gene	of	pepper	and	tobacco	but	
not	of	tomato	and	Arabidopsis thaliana	has	a	nucleotide	
sequence	stretch	that	is	complementary	to	the	Y-satRNA	
yellow	region	(YR)	sequence	but	differs	between	large	
amounts	 of	 siRNAs	 produced	 from	 the	 Y-satRNA	
YR	 sequence	 accumulate	 in	 Y-satRNA-infected	
plants	(Shimura	et	al.,	2011).	The	authors	proposed	a	
scenario	in	which	AGO1,	associated	with	the	primary	
Y-satRNA-derived	siRNAs,	cleaves	the	Chll	mRNA	at	
the	Y-satRNA	YR	portion.	This	cleavage	leads	to	the	
production	 of	 Chll	 dsRNA	 by	 the	 host	 RDR,	 which	
are	 subsequently	 processed	 into	 secondary	 siRNAs	
(Shimura	 et	 al.,	 2011).	 These	 findings	 shed	 light	 on	
how	 satRNA-derived	 siRNAs	modulate	 viral	 disease	
symptoms	through	RNA	silencing-based	regulation	of	
host	genes.

Other	 studies	 showed	 that	 satRNA	 accumulation	
does	 not	 correlate	 with	 RNA	 silencing	 (Cillo	 et	 al.,	
2004).	Xu	 et	 al.	 (2003)	 studied	 the	 necrosis	 induced	
by	 CMV-D-satRNA	 in	 tomato	 and	 demonstrated	
the	 involvement	 of	 programmed	 cell	 death	 (PCD)	 in	
symptom	 expression.	 Previous	 studies	 also	 showed	
that	 D-satRNA	 causes	 nuclear	 DNA	 fragmentation	
and	 chromatin	 condensation	 in	 necrotic	 tissues	 (Xu	
et	 al.,	 2000).	 Furthermore,	 Xu	 et	 al.	 (2000)	 found	
that	 D-satRNA	 localization	 in	 tissue,	 vascular	 cell	
development	 and	 induction	 of	 spatial	 patterns	 of	
necrosis	were	correlated.	

6. CONCLUSION 

Advancing	our	understanding	of	the	role	of	satRNAs	in	
CMV-plant	 interactions	 remains	 fundamental.	Recent	
studies	 indicate	 that	CMV-satRNAs	can	be	 the	 target	
of	RNA	silencing.	SatRNAs	can	reduce	the	expression	
level	 of	 the	 2b	 suppressor	 protein	 and	 consequently	
interfere	 with	 CMV	 pathogenicity.	 Nevertheless,	
interaction	 among	 satRNA,	 CMV	 and	 host	 during	
RNA	 silencing	 is	 not	 entirely	 elucidated	 although	
a	 state	 of	 relative	 balance	 is	 needed	 so	 that	 none	 of	
the	three	players	is	eliminated	(Zhu	et	al.,	2012).	The	
genetic	 structure	 and	 dynamics	 of	 CMV	 populations	
and	 their	 satRNAs	 are	 unrelated	 (Alonso-Prados	

et	al.,	1998),	although	CMV	could	play	an	important	
role	in	the	selection	of	specific	satRNA	variants	from	
mixed	populations	(Moriones	et	al.,	1991).	Likewise,	
satRNA-induced	 symptoms	 can	 vary.	 Further	 studies	
on	CMV,	satRNAs	and	host	RNA	silencing	will	lead	to	
a	better	understanding	of	interactions	among	the	three	
players	of	this	important	pathosystem.
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