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Abstract
Linkages exhibit numerous applications especially in modelling robot arms. Until now, NP-
Complete and PSPACE-Hard problems have been introduced within the linkage context. The
main subject of this paper is to introduce a new NP-Hard problem regarding movement of open
chain linkages. The objective of this problem is to minimize the moving components of the
linkage and their related movement impact, in a way that the end effector is ultimately placed at
the target point. For this purpose, first, the problem is formalized and its NP-Hard condition is
proved using reduction of sum of subset problem. A greedy algorithm with the time complexity
of and space complexity of is proposed for solving the problem, and computation
results from implementing the algorithm are compared with the optimized results. This
comparison demonstrates the efficiency and capability of the proposed algorithm.

Keywords: Open Chain Linkage, NP-Hard Problems, Reconfiguration Problem, Reachability
Problem, Greedy Method.

1. Introduction
Every linkage is generally equivalent to a connected graph, and an open chain linkage is a
linkage that is a graph corresponding to the simple path. The edges of the graph represent the
rigid bodies known as links, and the vertices show the joints of the arm, which are used to
connect the links to each other. The joints are rotational. The links are zero-depth, so in practice,
the links are able to afford a suitable level of abstraction for modelling the robot arm [1].

Reachability is amongst the problems related to linkage geometry. The decision prescription
for this problem is whether a specific point on a linkage (normally the end point) can reach a
point in the Cartesian space where the linkage resides or not [2]. The region where the end
effector can stand within is called Reachability Space and the manner of defining this region is
known as the Reachability Problem. The open chain reachability space consists of the region
between two concentric circles with the center and an external radius of ,

whereas if the length of the largest link is shown as , the internal radius will be .
Moreover, if , the reachability space is a circle with the radius of [2] (Fig. 1).
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Fig. 1: Reachability region with and , gray region is reachability space of
the arm.

Reconfiguration Problem is another important problem related to linkages in computational
geometry. In this problem, in which the positive solution of the reachability problem for the
given input becomes significant, the linkage movement path must be explicitly specified and
reconfiguration of the robot arm be obtained [1]. Considering the various solutions available for
solving the open chain reconfiguration problem, goal setting in these types of problems may
encompass minimum energy consumption for movement of the robot arm [3], dynamic
limitations and constraints such as considering speed and acceleration of joints [4], non-
intersection of links [5], movement of the arm within minimum time [6], considering the
environmental geometry of the linkage [7], and similar cases.

Computation complexities predominantly stand in NP-Complete and PSPACE-Hard problem
classes [7- 9]. The problem of folding an open chain in a way that the goal is to minimize the
length of the chain in 1-Dimensional space, area or circumference surrounding 2-Dimensional
space, and convex hull within 3-Dimensional space [9], is an NP-Complete problem, which
proof of this subject is presented in [10] using reduction to set partitioning problem. The
complexity of the reachability problem in an obstructed space and by authorizing intersection of
chain links whilst moving is NP-Hard. The same problem for an open chain linkage within a
non-obstructed space with intersected links is PSPACE-Hard [7].

A set of components required for building a mechanism includes rigid bodies accompanied
by rotary joints. The goal is obtaining a component layout where connection limitations are not
violated. Proving the NP-Hard nature of this problem is offered in [11] via the help of reduction
of subset sum. This problem by adding the next parameter is NP-Hard, which in [11], it is proven
using reduction to 3SAT problem.

Applying approximate and near optimal algorithms for solving NP-Hard problems is of great
significance [12]. In [13], linkage conformation and reconfiguration problem of an algorithm is
proposed with a time complexity of and space complexity of with least cost for
transforming the open chain linkage of the current configuration to its optimal configuration
within 1-Dimensional space. In [14], the approximate linear time algorithm for solving the
linkage folding problem is presented. In [15], an approximate algorithm with time complexity of

and space complexity of is presented for folding the snake linkage which
ensures that the length of the chain is no more than two times the length of the largest link.

Obtaining moving linkage joint, which their movement is mandatory for placement of the
end effector at the target point, and that the movement imposes minimum effect on other
components of the chain is a minimum and NP-Hard optimization problem. In this paper, while
proving this issue, a greedy approach to solving the problem is proposed and the results of this
algorithm with optimal results is compared. The paper is organized as follows. In section 2, the



Bulletin de la Société Royale des Sciences de Liège, Vol. 85, 2016, p. 766 – 777

768

formal definition of the problem is presented. In section 3, proof of the NP-Hard nature of the
problem is provided. Designed algorithms for solving the problem will be discussed in section 4.
In section 5, experimental results are presented, and the conclusion is expressed in section 6.

2. Linkage Movement Minimization Problem
In this section, after providing a formal definition for linkages, the linkage movement
minimization problem will be proceeding.

An open chain in form of is a sequence of interconnected links

where ( shows the length of the edges of the graph and is a positive fixed real

number. The arm joints are the vertices of the graph. ( is located between the

two joints. The is connected to the ground, and is a free joint. Joint is
the end effector of the robot arm. Every possesses a three-parameter kinematic
variable. is the Cartesian coordinate of joint in 2_dimensional
space, and is the relative angle between the two links and (Counter

Clock Wise). is the angle of with the positive direction of the , and equals
zero and is the fixed parameter of the last joint. It is obvious that the Cartesian coordinates of the
first joint is the fixed kinematic of the joint.

Rotation of a joint affects its subsequent joints. Is the subset of joint is defined
as in a way that , it may be said that each joint is under effect of the angular

movement of its superset joints, and the propagation direction of each joint is from the superset
joint toward subset joints. The relative angular movement of the th joint results in the Cartesian
parameter change of . Hence, the movement analysis of the Cartesian coordinate of a joint is

the function of the angular movement of one or more joints of its superset.
In the modelling conducted in this study, the first joint of the arm where its relative angle

begins to change is called the « » joint, and preceding joints (if present) are called
inert» joints. If a joint between a moving joint and the trailing joint of the arm does not exhibit

relative angular movement, it is called ; otherwise it is called . The trailing
joint of the arm is always If the joint while moving is only its
will change and if it is , all of its considered kinematic parameters will change. If a joint
is an « », only will change, and if it is « », none of its kinematic parameters will
change. Let start, end, and unit of movement are denoted by , respectively. Relation

1 and 2 define the Cartesian and relative angular speed of the joint during execution of the
movement.

Using Relations 1 and 2, the formal definitions of the movement roles of the joint during
the period are given in Table 1.

The aim of this study is to find a permutation of linkage joint movement roles with the highest
number of « » joint and lowest possible number of joints, which enable the end
effector to be placed at the target point.

)1(

(2)
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Table 1: The joint's movement roles

Now the linkage movement minimization problem is defined. A set named with numbers
is available, in a way that and is the number of linkage joints where for every
two and joints we have , and the joints between

and (if available) are

The linkage movement minimization problem consists of minimizing the linkage's moving
components and their effect on other components in a manner that fulfills the conditions of the
reachability problem. In order to minimize the involved components, the condition of maximum
« » joints must be met. In order to maximize the number of « » joints, the « »
joint is specified by obtaining the smallest trailing arm sub chain where the target point resides in
its reachability space. The closer the « » is to the trailing arm joint; the less other
components are involved in the movement. In order to minimize the effect of moving
components on linkage joints, we need to minimize joints and the effect of their
movement on other components of the open chain. The inputs of this problem are a preliminary
configuration of open chain linkages and target point in 2-Dimensional space. The goal in this

problem is to find a subset comprising of set in a way that

and conditions for reachability of subset are met. Joint
in subset acts as an « ». The reachability problem of subset is given

in Relation 3.

where is derived from Relation 4.

If is the largest member of set , then is derived from Relation 5.

In order to demonstrate the moving joints' effect on other joints, we need to define a measure
entitled Arithmetic Measure1. Relation 6 gives the formal definition of this measure.

(6)

1 AM

Dynamic role Definition

(3)

(4)

(5)
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The measure states the number of joints affected by the rotation of every moving joint of
the arm (Appendix 1).

3. Proof of the NP-Hard Nature of the Linkage Movement Minimization Problem
After conformation of the linkage movement minimization problem, proof of the NP-Hard nature
of the problem is proceeding via reduction to the sum of subset problem.

Sum of subset problem is NP-Complete in computer science context. The set S comprises m
available integers. The goal is to find all subsets of S in a way that the sum of all members falls
between low and high.

The linkage movement minimization decision problem determines whether for assumed
numbers AM and k, exists a subset where the Arithmetic Measure is more than AM and the
number of members are not more than . This problem has parameters such as linkage
movement minimization in addition to AM and k parameters.

The sum of subset decision problem determines whether for assumed numbers low and high,
exists a subset where the sum of members falls between low and high.

Theorem 1: the linkage movement minimization problem is an NP-Hard problem.
Proof includes converting every input sample of the sum of subset problem into an input sample
of the linkage movement minimization problem in a way that this transformation meets the
following two conditions [16]:

• Transformation must be in polynomial time.
• The solution of the movement minimization problem to an input of the subset sum

decision problem must be positive if the solution to its equivalent input in the movement
minimization problem is positive.

In order to initiate transformation, set S including m elements of and two high
and low integers that are the upper and lower limits of the selected subset sum of the set are
considered, then from this input, an input is formed for the movement minimization problem as
follows.

Set S is ascendingly ordered and subset comprising k members from set S are selected in a
way that the sum of its members falls between high and low. In order to build set L, the members
of set are converted into set

where

this set is considered as the coordinate of open chain joints, in a way that
and joint in this transformation is an « »,

then we proceed to build set L from these coordinates and according to Relation 7.

(7)

The optimal measure is set at its maximum value and it is assumed that all joints are

moving. Relation 8 demonstrates the calculation of this measure in the mentioned
transformation.
The target point is considered conincinding with . Figure 2 depicts the graphical model of

this transformation.

(8)
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Fig. 2: Transforming an input of the subset sum problem into the
movement minimization problem

Figure 3 shows an example of transforming an input of the sum of subset problem into input
of the linkage movement minimization problem.

In order to examine the validity of the transformation, it is checked to ensure that the input of
the subset sum problem has and subset with k members where the subset sum falls between
high and low, iff the input for the linkage movement minimization problem possesses an
subset with maximum members and a maximum Arithmetic Measure of , and
Relation 9 is satisfied.

Assume subset with k members exists, and due to the fact that according to the manner of
transformation, the largest subset in set L has members and Arithmetic Measure of

, then at the input of the movement minimization problem, we have subset with
members, in a way that and . Proof of Relation 9 is presented in
Appendix 2.

Fig. 3: Transforming an input of the subset sum problem into the
linkage movement minimization problem

)9(
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On the contrary it is assumed that the input of the linkage movement minimization problem
has the subset of with members and . Relation 10 explains the creation of the
members of subset

Therefore, subset is dependent on subset , and any alogorithm than can solve the linkage
movement minimization problem is used to solve the sum of subset problem.

4. Greedy Approach to Solving the Problem
If is the number of open chain joints and is the number of « » joints, exist,
which to fulfill the purpose of the linkage movement minimization problem, must be examined
in terms of their or nature. Total possible configurations for open chain

joints are . Therefore a solution that can lead to an optimal answer will not be possible in
Polynomial time. In this section a greedy approach is introduced for solving the linkage
movement minimization problem.

The main idea behind this approach is based on the fact that in step one, all involved
components must be minimized, and in step two, the effect of movement of these components on
other components must be minimized. In order to achieve this purpose, first, by finding the
position of the « » joint in the open chain, the smallest trailing sub chain in the arm,
which the target point is within its reachability space is obtained, and in the second stage,

joints of the chain are specified.
In the proposed method, the open chain is exmined from finish to start, the first trailing joint

of the arm in which the destination point is situated within in its sub chain is returned as the
« »joint. Figure 4 demonstrates the method of finding the « » joint.

Fig. 4: Finding « » joint

(10)

Algorithm: Finding ActuatorJoint

Input: Initial Configuration,Target Point
Output: // is the number of « » joints , is subset of set

comprising
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The output of the joint is which a « » joint and all preceding joints are
static. In addition, subset is one of the other outputs that is the smallest trailing sub chain of the
arm.
In the next stage, the goal is to find the joints between joint until the

last joint in the arm. In other words, in this stage the goal is to eliminate a numebr of members
from subset and substitute them with a lower number of members from set L. In order to
achieve this, for every joint between to , first we assume that it is a joint. With

the assumption of being a joint, is created and reachability

conditions are examined. If the conditions are not met, transforms into an

joint. Figure 5 shows the algorithm for finding joints.

Fig. 5: Finding passive joints

The input for this algorithm is the output of it previous algorithm, and its output is the subset
. The first step in the proposed approach possesses a time and space complexity of . In

the second phase, k joints must be exmained in terms of or state, which this
exmaination must be carried out for k joints in every stage of the algorithm. In the worst case, if
the « » joint is the first joint of the arm, the second step will be arried out in the time

. Thus, the time complexity of the proposed approach is and the space complexity
is .

Figure 6 shows an example of the decision tree of the proposed solution for joints.
The word on each branch states establishment of for in each node, and

states the non-establishment of such.

Algorithm: Finding PassiveJoints

, i from Find Actuator Joint//Input:

Output: // is in a way that
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5. Experimental Results
In this section, while presenting the experimental results of the proposed greedy approach, we
will attempt to compare the obtained results by considering them alongside optimal results. The
conducted simulation is the result of implementing the proposed approach explained in the
previous section 1000 random linkages and each of 1000 random target points. The number of
links are between 4 to 20, and the length and initial configuration of every linkage is random. In
more than 80% of the cases, the results of the greedy approach with optimal results are identical.

Moreover, these results show that in most cases, by applying this method, more than half of
the joints are static and thus, are eliminated from the main chan. In addition, the results of this
simulation state that the obtained sub chain, in more than half of the joints, does not require any
modification to relative angles. These results are provided in Table 2. The results are from an
average 10 iterations of the simulation.

Fig. 6: An example decision tree for selecting joints
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Table 2: Results obtained for 1000 linkage simulations in 1000 target points

Percent of inert
joints

Percent of AM
similarity of

optimal results
with greedy

results

Joint
classification

Greedy results Optimal results

Percent of
passive joints

relative to
total

Percent of
passive joints

relative to static
joints

Percent of
passive joints

relative to total

Percent of
passive joints

relative to
static joints

Without
static
joint

13.5 94.5

Less than
half

11.5 85 12.2 90.4

More than
half

2 15 1.3 9.6

Less
than
half

65.2 87.2

Less than
half

44.8 68.7 52.7 80.7

More than
half

20.4 31.3 12.6 19.3

More
than
half

21.3 80.8

Less than
half

11.5 53.7 15 70.5

More than
half

9.8 46.3 6.3 29.5

6. Conclusion
In this paper, a new NP-Hard problem was proposed regarding open chain linkage movement.
Providing a greedy approach was considered after the precise definition of linkage movement
minimization problem and approval of being NP-Hard. Experimental results show that the results
of applying this approach with optimal values are similar results in 80% of cases. Moreover, the
results show that the proposed approach fulfills the goal of minimization of linkage components.
Furthermore, this method leads to erosion of arm, reduces energy consumption and the required
parameters and variables for calculating the final configuration of linkages. Future research
would be considered on the studying applications of the other types of robot arms.

Appendix 1:
For example, for the subset , the third and eighth joints are The

second joint is an « », the first joint is , and other joints are .

Furthermore, and states that eight joints (from joint 3 to joint 11) are

affected by the rotation of two joints (joint 2 and 3). In this subset, .

Appendix 2:
Proof of Relation 9 is done using the triangle inequality theorem, Relation 4, and Lemma 1.
Lemma 1: for every non-negative numbers a, b, and c where , the relation
holds.
Proof: If , we have . Thus, and Lemma 1 is proven.

Using the triangle inequality theorem and definition for in Relation 4, establishment

of is proven.Considering that members of the subset are ordered

ascendingly, is the largest member of set L, and thus, for every subset with its
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largest member , the relation is established. If in Lemma 1 ,

, and are input for a, b, and c, respectively.
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