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PARTIAL DIFFERENTIAL OPERATORS MODULO
SMOOTH FUNCTIONS

LEONHARD FRERICK AND JOCHEN WENGENROTH

ABSTRACT. For a constant coefficient linear partial differential operator
P(D) on 2'(f2) we provide new characterizations when

2'(Q) x $(Q) = 2'(Q), (u, f) — P(D)u+f
is surjective and when it has a continuous linear right inverse. Both
results are in the spirit of a celebrated result of Meise, Taylor, and Vogt
who characterized right invertibility of P(D) on 2’(Q) by properties of
fundamental solutions.

1. INTRODUCTION

Already in 1962, L. Hormander [7] characterized the surjectivity of P(D) :
2'(Q0)/&(Y) — 2'()/E(§) by a condition called P-convexity for singular
supports:

For each compact set K C Q there is another compact set

M C € such that each u € &(Q) with P(D)(u) € £\ K)

belongs to &(2\ M)
where P(D)* = P(~D) is the transposed operator. To prove sufficiency,
Hormander used a complicated ad hoc argument to find a seminorm to which
the Hahn-Banach theorem applies, necessity of the convexity condition was
proved by a delicate construction. In [5] we gave a new proof using abstract
results for (LF)-spaces, and in [6] we extended the characterization to the
more general setting of convolution operators on spaces of ultradistributions.

The aim of section 2 is to provide a characterization in the space 2'(£2)
which involves the operator itself instead of its transposed, namely by the
existence of fundamental solutions which are differentiable up to a fixed
order in large sets. This is in the same spirit as Meise, Taylor, and Vogt’s
[10, 11] characterization of the existence of a continuous linear right inverse
for P(D) . 2'(Q) — 2'(Q) where differentiability must be replaced by
vanishing.

The proof is based on a variant of a classical result of Palamodov and
Retakh about projective spectra of (LB)-spaces.

In section 3 we show that the same condition with “differentiable up
to a fixed order” replaced by “infinitely differentiable” characterizes the
existence of a continuous linear right inverse of the operator 2’(Q) x () —
2(Q), (v, ) — P(D)u + f.

In view of the similarity of both characterizations and since existence
of right inverses on 2'(Q?) and &(Q) are the same conditions by [10, 11]
(and by [1] both are even equivalent to the existence of an operator R :
&) — 2'(2) with P(D) o R = id) it might have been hoped at least for
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convex sets ( or = RY that the operator above always has a right inverse.
Using results of Hormander about the propagation of regularity, we show in
section 4 that this is not the case. The Laplace operators in two variables
considered as an operator on 2'(R*) does not have a right inverse modulo
smooth functions. In particular this shows that having an inverse mod &
does not only depend on the principal part of the operator.

Throughout this article P(D) denotes a (non-zero) linear partial differ-
ential operator on RY with constant coefficients. For an open set Q C BV

we abuse standard notation and denote the operator
2'(Q) x E(Q) — 2'(Q), (w. f)— P(D)u+ f

by P(D) +id and we call P(D) surjective or right invertible mod & on Q if
P(D) + 1id is surjective or has a continuous linear right inverse, respectively.
() nen will always denote an open and relatively compact exhaustion of Q2
with €, © €, and — but this is just for convenience - we assume (2, to
be regular enough so that the possible definitions of €*(0),,) - as Whitney
jets, restrictions of €% (RN )-functions to 1, or ¥*-functions on Q, where
all partial derivatives up to order k extend continuously to €, - all coin-
cide. That this is immaterial up to more or less notational changes for the
proofs in due to the fact that (just by multiplying with cut-off functions) the
three corresponding sequences %(,) define equivalent projective spectra
of Banach spaces with the Fréchet space €%(Q) as projective limit,.

2. SURJECTIVITY MODULO SMOOTH FUNCTIONS
Theorem 1. P(D) is surjective mod & on an open set @ if and only if
VneN Im>n Vk>m, ¢, IE e Z(RY)
P(D)E¢ = §¢ in Qx and E¢ € 5(Q).

As already mentioned, if the requirement E & €*(Q,) is replaced by
E¢ = 0 in Q, one obtains the characterization for P(D)} : 2'(Q2) — 2'(Q)
having a continuous linear right inverse, which is due to Meise, Taylor,
and Vogt [10, 11]. A similar condition (where distributions are replaced by
hyperfunctions and differentiability by an appropriate analyticity condition)
was obtained by Langenbruch [9] as a characterization of surjectivity of (D)
on the space of real analytic functions.

The proof of the theorem will use a version of a classical result of Palam-
odov and Retakh for projective spectra 2" = (X,,0p,) of (LB)-spaces,
Le, off, + X;n — X, for n < m are continuous linear “spectral” maps
with op, o o' = o} for n < m < k and g = id. The projective limit
Proj 2" = {{zn)nen € [ Xn : 0%2m = zn} is endowed with the relative

nEN
topology of the product. The vector space Proj! 2" is defined as the cokernel
ofthemap ¥ : [] Xn — [I Xn, (Zn)nen = (Tn—0", 1Tns1),i.e. Proj' 2 =
neN neM
1T X,»/im 4. This ad-hoc definition indeed coincides with the derivative of
nelN
the functor Proj (acting on the category of projective spectra where mor-
phisms T = (T, )new : (X, 00,) — (Ya, o0} are sequences of confinuous
linear maps commuting with the spectral maps) as defined by Palamodov



[12, 13]. The main point is that for a morphism 7" : & — £ with surjective
components T, : Y, — Z, the projective limit (yn)nen — (Thyn)nen is sur-
jective whenever the kernel spectrum 2 = (ker Ty, o7,) satisfies Proj! 2" =
0. If Proj'? = 0 holds, this is also necessary for surjectivity.

All this can be seen in [16] where it is also shown that instead of surjectiv-
ity of the components T, : Yy, — Z, it is enough to require 67, (Zr,) C 15 (Yn)
for some m > n. To prepare the proof of theorem 1, let us describe the
spectra to which we will apply the abstract theory Since we are aiming
at surjectivity of T = P(D) +id : 2'(Q) x &£(Q) — 2'(£2) we have to
take Y, = 2'(Q,) x €™(%) and Z, = 2'(Q,,) with restrictions as spectral
maps. The condition 07, |(Zn41) C Tr(Ys) is easily verified by cutting off
and forming the convolution with a fundamental solution of P(D). Since
Proj'®% = 0 (this follows e.g. from a particular case of the proposition be-
low), we get:

P(D) is surjective mod & on Q if and only if Proj'. 2" =0,

where 2 = (Xn, 0) with X,, = {(F, f) € 2'(Q) x €™ (Q) : P(D)F = f}
and restrictions as spectral maps. Proj'2 will be evaluated by using the
following version of the Palamodov-Retakh theorem ([13, theorem 5.4] and
[14]. see also [16, theorein 3.2.9]) where we call a spectrum 2 reduced if
VneN Im>n Vk2>ntheclosuresof o}, Xm and gff Xi in X, coincide.

Proposition 2. For a reduced projective spectrum Z = (Xn, 0%) of (LB)-
spaces assume that there are Banach spaces Yy, C X, with continuous inclu-
sions such that

() omYm C Yy foralln < m and
(8) VneN Im>n Vk>m o Xm CopXi+Ya.
Then Proj' 2" = 0 holds.

Let us remark that if Y, are replaced by the unit balls B, of these Ba-
nach spaces one obtains the classical Palamodov-Retakh theorem. Then
(8) implies reducedness and (@), (8) constitute in fact a characterization of
Projlﬁ’ = 0. Moreover, one can replace (3) by the a priori stronger con-
dition ¢% X, C 0"Proj 2 + B, (which characterizes Proj'2 = 0 also in

absence of ) by [16, 3.2.16]).

The proof of the proposition requires an application of Grothendieck’s fac-
torization theorem to obtain a condition like (Py) in [2] or (P3) in (16, 3.2.17]
which then reduces the proposition to the classical Palamodov-Retakh result
as in [2, lemma 5] or [16, 3.2.18].

If, in our situation, we endow X, with the relative topology of 2/'(Q,,) x
%™ (), reducedness of the spectrum is easy to prove. Indeed, for (F, f) €
Xny1 we take ¥ € 2(Qn41) with 4 = [ near 0, (this means ¥(€) = 1 for all
€ in a neighbourhood of §2,,) and an approximate identity e, (i.e., e,(£) =
N x(r€) for some x € Z(RY) with [ x(£)dé = 1), and we set I} := e, x Y F
and f, = P(D)F, to obtain (Fy, f;) € Proj2" and (F;, f;)la, — (F. f) in
X, for r — oc.

To apply the proposition as stated we would need X, to be (LB)-spaces
which is not evident since closed subspaces of (LB)-spaces may fail to be
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(LB)-spaces. However, we can take the associated (LB)-space topology on
X, and the argument above shows that the spectrum remains reduced for
these stronger topologies {a different argiument would be, that @'(£2) x £(02)
has an equivalent spectrum of (LS)-spaces, i.e., (LB)-spaces with compact
inciusions, and since this class is indeed stable with respect to closed sub-
spaces, (Xn)pn is equivalent to an (LB)-spectrum, which is enough since the
condition in the proposition is invariant under passing to equivalent spec-
tra). To prove the suffiency part of theorem 1 it is therefore enough to verify
the condition of the proposition for X, as above.
The first step is to replace the Dirac distributions by general ones:

Lemma 3. The condition in theorem 1 implies the following one:

YneN 3m>n Yk>m, Fe@'(Q) wth Flg, =0
3(E,e) € Z'(RY) x €%(RY) with Elq, =0 and P(D)E = F +e¢ in (.

Proof. We first note that for Dirac distributions this is the same condition
as in theorem 1 (up to replacing n by n + 1 and & by & plus the degree of
P, we just take e = P(D}{1E¢) with a cut-off function ).

For n € N we now take m € N from theorem 1 according to n + 1. For
k> m we set e = min{dist(ﬁmﬂ‘;_l),dist(ﬁk.ﬂf". L)}, cover O\ by
finitely many balls B(§;, <), and choose a subordinated partition of unity
(;), Le. p; € D(B(E;,¢)) satisfy ;=1 on O \ Q.

For F € 2'(Q) vanishing in €, and each j the distribution ¢, F has
compact support in B(£;, £} and therefore some finite order a; € N. Now we
choose B € 2'{RV) vanishing in Q2,4 and e; € €+ (RY) with P(D)E; =
(5& + € in Q.

We set £ = 5.0_¢ » B+ p;F € 2'(RY) which vanishes in Q, and
e=30_¢ rejxo;F € ¥F(RY) (by [8, 4.2.3]) and obtain

P(D)E = Y 6. «P(D)Ej+p,F=) o;F +) ¢ xe;%p;F
= F+ein Q.

30

Proof of theorem 1. Now we can verify the abstract condition of the propo-
sition with Y, = {(F, f) € X, : F € €(Q,)}.

We choose a fundamental solution L of P{) with finite order r € N, see
[8, 7.3.10], and choose for fixed n € N some m > max{n + 1,7} satisfying
the condition in lemma 3. For (F,f) € X;aq and & > m + 1 we have to
construct (G, g) € X with (F), f) — (G, g)la, € Ya.

We take ¢ € 2(Qy,41) with ¢ = 1 near ), and obtain

PDWF =f-PDY(A-¥)F)=f+R
where R € 2'(R"Y) vanishes on §2,,.
From lemma 3 we get E € 2'(R”) vanishing on Q,, and e € #*(RY) with
P(DYE = R+ e in §hy1.

Extending f to a ‘-""‘(RN)-function with support in Qg4 and forming
the convolution with L we find Ey € €(RY) with P(D)Ey = f.



Now G = ¢pF — E ~ Ej defines a distribution with P(D)G = —e. Hence
(G,—e) € Xy and since »F = F and E = 0 on Q,, we get

(F.f) = (G —e)la, = (Eola,, f + €lQ%) € Yn.

By proposition 2 and its preceding remarks this completes the proof of the
sufficiency part.

We now prove necessity of the condition for surjectivity mod & on Q.
In this case we have Proj' 2" = 0 and obtain from the Retakh-Palamodov
theorem

VvneN Im>n, Be B(X,) onXm Co"Proj2 + B.

There are a(n) € N such that for every (F, f) € B the order of F'is bounded
by a(n). We fix k> m and & ¢ Q,,, and choose 7 € N with 2r — a(n) > k.

Let Q(D) be the r-th power of the Laplacian (i.e., Q(£) = —[£]?") and let
T be a fundamental solution of Q(D) which then has singular support equal
to {0}. Since P(D) is surjective mod & there are (F, f) € 2'(Q) x &(Q)
with P(D)F = Q(D)o + f € &(Qm).

Hence there are G € 2'(Q) and g € £(Q) such that P(D)G = g and
o (F — G,Q(D)o: + f — g) € B. We thus obtain that the restriction of
F — G to Q, has order < a(n).

We now take v € 2(Q) with ¥ = 1 near Qx4 and get

P(D) ($(F = G)) = QD)o + f = g+ P(D) (¥ — 1)(F = G)),

hence u = f — g + P(D) ((# — 1)(F — G)) is a distribution with compact
support and at the same time in & (Qk41).

For H =T *%(F — G) € 2'(RV) we obtain P(D)H = § + T » u with
T+u € &(Q+1) since the singular support of T is {0}. Using a fundamental
solution of P(D) we finally solve P(D)e = x(T % u) with a cut-off function
X € D(Q41) which is equal to 1 near 0 and ¢ € &(RV) and set

Eé:H—EA

This solves P(D)E; = §¢ in Qi and since Q(D)E; = ¥(F — G) — Q(D)e has
order less than a(n) in Q,, E¢ itself must be 2r — a(n) times continuously
differentiable there.

O

For some purposes, theorem 1 works equally well as Hérmander’s pow-
erful characterization by P(D)-convexity for singular supports. For in-
stance, the method of [8, 7.3.8] to change in the Fourier inversion formula
(&) = W [ @9 p(z)dz integration over RY to a suitable cycle in CV

n

and to use the Paley-Wiener-Schwartz-theorem applies directly to obtain
the desired fundamental solutions of theorem 1. In this way one can show
that P(D) is always surjective mod & on convex open sets.

Another consequence of theorem 1 (obtained by rather logical than math-
ematical reasoning) is that surjectivity mod & on Q! and on 02 carries over
to @ = QI NQ2
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3. RIGHT INVERSES MOD &

In this section we characterize right invertibility of P(D) mod &. The
investigations of Meise, Taylor, and Vogt [11] about P(D): 2'(Q0) — 2'(Q)
start with the observation that 2'(Q) = Proj?2'(Q,) (= ProjZ' () with
equivalent spectra) is strict in the sense that o}, X;n = of X for all k& >
m = m(n) and thus the existence of a right inverse implies that (as a quo-
tient) ker P(D) is strict, too. A surprisingly simple construction showed
that strictness is also sufficient.

A different method would be to use the splitting theory for 2’ devel-
oped by Domaiiski and Vogt [3, 4] which in fact was inspired by [11] and
even allows applications to distributional complexes. In our situation, the
“model spaces” 2' = (s')N and & = sM are mixed up and it seems too
ambitious to search for a general splitting theory (for instance, already
Exth; (&, 2') does not vanish). However, the direct approach of [11] works
well after changing from the natural but non-strict representation &(Q) =
Proj%"(Q,) to the strict spectrum (&(2,))nen. We therefore consider
Yo = 2/(Q) x £(Q,) and X, = ((F, f) € Yo P(D)F = f}.

Theorem 4. P(D) has o right inverse mod & on Q if and only if
YneN Im>n Yk>m 40, 3E € 2RY)
P(D)E¢ = b¢ in Q and E¢ € ().

Procf. We first prove that invertibility mod & implies strictness for the
kernel spectrum.

Since (Yn)n is not a spectrum of (LB)-spaces, this does not already fol-
low from the abstract theory (since there is no result about automatic
equivalence of general strongly reduced spectra). Nevertheless, strictness
of the kernel spectrum follows from the fact that the continuity of a lin-
ear map R : 2/'(Q) — 2'(Q) x £(Q) implies that for each n € N there is
m > n such that R(F) vanishes on Q, whenever F vanishes on Qp,. In-
deed, since the separable Fréchet space 2(Q,) has many total bounded
sets B, for the typical 0-neighbourhood B° x U in 2'(Q2) x &(Q) with
U= {fe&Q):|f) <1forallla| <nandz € Q,} the elements
(F, f) of N &(B° x U) all vanish on Q,. And since each 0-neighbourhood

e>0

of 2'(QQ) contains some C° with a bounded set C in some 2(Q,y,), the con-
tinuity estimate R(C°) C B° x U gives the desired implication.

Let now R be a continuous linear right inverse of P(D) + id and n < m
as above. We choose ¥ € 2(Q) with ¢ = 1 near Q. For (F,f) € X,
we consider (G,g) := (YF, =y f) € 2'(Q) x £(Q). From the vanishing of
P(D)G + g on ©,, we conclude that (H,h) = R(P(D)G + g) vanishes on Q,
and we obtain (G, —g) — (H,—h) € Proj 2" with restriction to 2, equal to
the restriction of (F, f).

Let us now assume that {X,)nen is strict which implies Proj'2 = 0,
and as in Section 2 this gives that P(D) is surjective mod &. Moreover,
we have ¢ X,, C ¢"Proj.2 for some m > n. We fix £ ¢ Q,, and choose
(F, f) € 2(Q) x &(Q) with P(D)F — f = §. Since (F, f)la, € Xn there is
(G,g) € Proj. 2 with (G,9)la, = (F, f)la,..



We get P(D)(F — G) = é¢ + f — g and that F' — G vanishes in Q,. For
k> m we take ¢ € 2(Q) with ¢ = 1 near € and form the convolution
h = Lx(f — g) where L is a fundamental solution of P(D). Then E; =
F — G — h has the desired properties.

To prove sufficiency of the condition, we proceed as in the proof of iemma
3 to obtain (with the same quantifiers as there) for each F € 2'(Q) with
Flqa, = 0some (E,e) € 2'(RY)x&(RN) with E|q, = 0and P(D)E = R+e
in Q. The crucial difference now is, that the constructive proof gives a
continuous linear operator ' = T'(n, m, k) : 2'(, Q) — 2'(RY) x &(RM)
such that (E,¢) = T(R) has these properties for each R € 2'(Q, Q) =
{Re 2(Q) : R|q,, =0} (in the proof of lemma 3, e; € ¥+ depend on F
via its order, in the present situation, e; € & are independent of F').

By renumbering the elements of the exhaustion we may assume y =
0, m(0) = 0, and m(n) = n+ 1 for n € N, and we abbreviate T,, =
T(n,m(n),n + 2). Thus, by restricting the images, we obtain continuous
linear operators

Ty 9/(Qs-Q-m(n)) - 2'(0.Q,) x £(Q)

such that Sy := (P(D) +1d) o T, induces the identity operator in 2'(Qn42).
Inductively, we set Qo = T and

Qnt1(F) = Qn(F) + Tni1(F = Sp(F)) for F € 2'(Q).

Since F' — S,,(F) vanishes in Q49 this is well-defined, and since Q4+ (F) —
Qn(F) vanishes in Q, the limit Q = lim @, defines a continuous linear right
inverse of P(D) + id. O

The formulation of the third condition in the theorem is chosen to empha-
size the similarity with theorem 1. If P(D) is surjective on &(2), strictness
of the kernel spectrum implies the (formally) stronger condition

VneN ImeN VEEQ, 3 E e 2(Q) with
P(D)E¢ = § and E¢ € £(Q,).

For Q = R¥ yet another formulation is that for each [£| > m there is a
parametrix for P(D) which vanishes in the ball B(£,n).

The typical examples of operators with right inverses mod & are hypoel-
liptic operators which have fundamental solutions that are ¥ outside the
origin. Since hypoellipticity at the same time is the typical situation where
P(D) does not have a right inverse properly (which was proved by Vogt [15],
see also [11, corollary 2.11]), one might guess that each partial differential
operator has a right inverse mod & on convex sets (then the condition of
theorem 1 is satisfied and the one in theorem 3 looks only slightly stronger).

In the next section we show that this is not the case even for Q = RV,

4, AN EXAMPLE

Example 5. For P(x,y,z) = 2 + y?, the operator P(D) is surjective on
E(R®) and 2'(R3) but it does not have a right mverse mod & on R>.
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Since the heat operator has the same principal part as the operator above
this shows that having a right inverse mcd & dces not only depend on the
principal part of the symbol.

To prove nou-existence of a right inverse mod & we use Hormander’s
result {8, 11.3.7] about the propagation of regularity, namely that for open
convex sets {1 < (g the following conditions are equivalent:

(1} Every u e @'(Q2a) N &) with P{D)u = 0 belongs to £({12).
(2) Every hyperplane H with o,(H') = 0 which intersects (5 also inter-
sects €.
Here, H' denotes the orthogonal complement of H and for a subspace V of
RY we use Hormander’s [8, section 11.3] deﬁnitions

a,(V) = mf lim Py (&, t)/P(£,t) with

£-—-oc
Py(e,t) = sup{|P(§+0)|:0€V, 0 <t} and
Pe,t) P—qaﬁt%ZIP (€)1

{where the tilde ~ means that the guotient is contained in [1/¢, c] for some
¢ > 1). For a one dimensional subspace V = {Ala,b,¢) : A € R} and
P{r,y,z) = x* + y* as in the example, an elementary calculation yields
op(V) ~ a® + b?, hence a hyperplane H in R® satisfies 0,(H’) = 0 if and
only if it is parallel to the (2, y)-plane. Therefore, regularity of zero solutions
propagates along such hyperplanes (which is not too surprising, since for
fixed z = zg, P{D) “is"” the Laplacian).

We assume now, that P(D) has a right inverse mod & on R®. According
to theorem 3 and the remark after its proof we obtain (by shlftmg £ to 0)

YneN 3Im>n VY[E>m IEe€ P'(RY

P(D)E =g and E € &(B(&.n))
where B(£, n) denotes the ball of radius n around £. In particular, there is
a fundamental solution E with F € £(B((m,0,0),1)) for some m € N.

For each point p = (z,y,2z) with |z| < 1 there is a line L through p
and some point of the ball B((m,0,0),1) which is parallel to the z,y-plane
and does not contain 0. Applying the propagation of regularity to Qs =
L+ B{0,e) and ) = Q; N B((m,0,0),1) with an appropriate ¢ > 0 we
obtain that E is ¥ in the set {|z| < 1} \ {0}.

Choosing ¥ € 2({|z] < 1}) with ¢ = 1 in a neighbourhood of 0 we see
that f = P(D)(1 -4)E = dg+ P(D)(¢E) is a €*-function on R? (the right
hand side is €% outside the origin and P(D)(1 — )£ is € at the origin).
Since every constant coefficient partial differential operator is surjective on
&(R?) we find g € &(R®) with P(D)g = f and obtain a fundamental solution
F = 4F + g of P(D) which is singular only at 0. This implies that P(D)
is hypoelliptic (see e.g. [8, 11.1.1]) which is not true since P(D}F = ( for
every distribution which only depends on the z-variable.

Essentially, we know only this single example of a partial differential op-
erator without right inverse mod € on RY. A more natural candidate would



be

the Schrodinger operator 19, — A, for which we suspect that it does not

have a right inverse mod & on RY either.
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