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Abstract

In this paper, we extend Priestley duality for bounded distributive
lattices to all bounded distributive semilattices. We show that we
cannot take the prime spectrum as Priestley dual but have to turn to
a suitable weakening of the concept of prime ideal.
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Introduction

Stone duality for Boolean algebras in 1936 ([10]) and Pontryagin duality
for abelian groups ([8]) are major achievements in algebra that opened the
door for numerous and fruitful developments : Stone-like dualities exist now
in abundance, as nicely shown in Davey’s paper ([4] and [2], see also [3] and
[7]). One of the most interesting works in this aera is Priestley’s duality
for distributive lattices in 1970 ([9]) where a full comprehension of natural
dualities was perhaps for the first time made possible.

Another feature of Priestley duality is that it gives a simple alternative to
Stone duality for distributive lattices. Now Stone duality very easily extends
to distributive semilattices and finds in this larger context its most natural
setting, as shown by Grätzer in 1971 ([6]). In this paper we show that rather
curiously such an extension is not possible stricto sensu as far as Priestley
duality is concerned. We give also an alternative solution in terms of a
spectrum that is larger than the prime spectrum and examine some classical
dualisations.
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1 The duality

Definitions 1.1. 1) By a distributive semilattice, we mean a bounded
∨-semilattice S = (S,∨, 0, 1)1 such that

(Dist)c ≤ a ∨ b ⇒ ∃a′ ≤ a, ∃b′ ≤ b with c = a′ ∨ b′.

If the formula (Dist) is not an equation in the language ∨, 0, 1, it be-
comes so in an extended language ∨, 0, 1, ↓, where ↓ is the (multivalued)
unary operation such that a ↓= {b | b ≤ a}. Hence the class of dis-
tributive semilattices is closed under cartesian products, subobjects and
homomorphic images if homomorphisms were understood as mappings
respecting ∨, 0, 1 and ↓ (that is, f(a ↓) = (f(a)) ↓, like p-morphisms
of Kripke structures, see [1]). Unfortunately, we shall have to consider
other maps as morphisms to get a duality. We do this now, following
Grätzer ([6]).

2) If S and S ′ are distributive semilattices and f is a map S → S ′, then
f is said to be a morphism if

(Mor)P ′ prime ideal of S ′ ⇒ f−1(P ′) prime ideal of S,

where we recall that an ideal of a semilattice is prime if its complement
is non-empty and lower directed.

It is not difficult to prove that f is a morphism if and only if it respects
∨, 0, 1 and satisfies the following “equation” :

(f(a ↓ ∩b ↓)) ↓= f(a) ↓ ∩f(b) ↓ .

We denote the resulting category by S and recall that Grätzer has
shown that S is dually equivalent to the category of Stone spaces
(compact sober spaces with a basis of compact open sets) and strongly
continuous maps (continuous maps such that the inverse image of a
compact open set is compact).

At the object level, the (“Stone”) dual of a distributive semilattice S,
its Stone space, is (X1(S), τ1) where X1(S) is the prime spectrum of S

1As usual, we use the same symbol to denote a structure and its universe. When
necessary, the intended type will be clear from the categorical context.
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(the set of prime ideals of S), endowed with the topology τ1 generated
by {τ1(a) | a ∈ S} with

τ1(a) = {P ∈ X1(S) | P 63 a}.

3) Following Priestley’s ideas, we define the prime Priestley space of S as
X1(S) = (X1(S), τ,≤) where the order is the inclusion relation and τ
is the topology generated by the τ1(a) (a ∈ S) and their complements.

We shall see that this space is usually not compact, that its decreasing
clopen subsets are not necessarily of the form τ1(a), for some a ∈ S,
even not an intersection of a finite number of them. More dramatically,
we shall show that X1(S) does not characterize S. In the quest for a
suitable dual, it is natural to turn to some compactification of X1(S).
At the algebraic level, this amounts to consider the free distributive
lattice over a distributive semilattice, and we first do this.

Construction 1.2. Let S be a distributive semilattice. Denote by Fin(S)
the set of all finite subsets of S and for E = {e1, . . . , en} ∈ Fin(S), let
IE =

⋂{ei ↓| i = 1, . . . , n}.
Define an equivalence θ on Fin(S) by EθF if and only if IE = IF . Order

the quotient F (S) = Fin(S)/θ by Eθ ≤ F θ if IE ⊆ IF . To characterize
F (S) we need to introduce weak morphisms of semilattices : we say that a
map f : S → S ′ between distributive semilattices is a weak morphism if it
respects 0, 1,∨ and ∧ when the latter is defined (this is indeed weaker than
Definition 1.1, but of course, stronger than the usual semilattice homomor-
phisms, that we do not consider in this paper). We denote SW the resulting
category.

Theorem 1.3. With the notations of 1.2, F (S) is the free distributive
lattice over S within SW .

Proof. It is clear that F (S) is an ordered set in which Eθ ∧ F θ is given by
(E ∪ F )θ. We use the distributivity of S to compute ∨. If E,F ∈ Fin(S),
let E ∨F = {e∨ f | e ∈ E and f ∈ F}. Then Eθ ∨F θ = (E ∨F )θ. To prove
this, first note that Eθ ≤ (E ∨F )θ and F θ ≤ (E ∨F )θ. Also, if Eθ, F θ ≤ Gθ,
then IE∨F ⊆ IG. Otherwise there exists x ∈ IE∨F and g ∈ G such that x 6≤ g.
Let P be a prime ideal such that P 3 g and P 63 x. If both E and F meet
P , let e ∈ P ∩ E and f ∈ P ∩ F . Then, x ≤ e ∨ f ∈ P , which is impossible.
Hence either P ∩ E = ∅ or P ∩ F = ∅, say P ∩ E = ∅. Since P is prime,
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there is some z with z ∈ IE and z 6∈ P . Hence z ∈ IE ⊆ IG, whence z ≤ g,
which prevents g ∈ P , another contradiction.

We have proved that F (S) is a lattice. In fact the mapping Eθ 7→ IE

embeds F (S) into the ideal lattice of S. In particular, F (S) is distributive.
Let α : S → F (S) be the natural map : s 7→ {s}θ. Clearly, α is a weak

morphism (but generally not a morphism, see Remark 1.4 3)). Suppose now
h is a weak morphism from S into a distributive lattice L. The only possible
extension of h to the whole of F (S) is

h̃ : Eθ 7→ ∧{h(e) | e ∈ E}.

We show that this definition works, that is, h̃ is a lattice homomorphism
F (S) → L such that h̃◦α = h. The only non-trivial point is to prove that h̃ is
well-defined, that is, IE = IF implies

∧{h(e) | e ∈ E} =
∧{h(f) | f ∈ F}. It

clearly suffices to show that if IE ⊆ f ↓, then
∧{h(e) | e ∈ E} ≤ h(f). From

IE ⊆ f ↓ follows Eθ ≤ {f}θ, whence (E∨{f})θ = {f}θ and
∧{e∨f | e ∈ E}

exists in S and equals f . Since h is a weak morphism, we have h(f) =∧{h(e∨ f) | e ∈ E} =
∧{h(e)∨ h(f) | e ∈ E} = (

∧{h(e) | e ∈ E})∨ h(f) by
distributivity, and therefore

∧{h(e) | e ∈ E} ≤ h(f) as required.

This result calls for some remarks.

Remarks 1.4. 1) If D is the category of bounded distributive lattices,
then Theorem 1.3 is the statement that D is a reflective subcategory
of SW via the functor F .

2) In the proof of the previous theorem, one sees that F (S) is a sublattice
of the ideal lattice of S. More is seen in fact : F (S) is the sublattice
of the ideal lattice of S generated by (the principal ideals of) S and
any element of F (S) is a meet of finitely many elements of S : Eθ =∧{{e}θ | e ∈ E} holds for any E ∈ Fin(S).

3) The corresponding result in S is a negative one. In fact, the free dis-
tributive lattice over S exists in S if and only if S is itself a lattice.
To prove this, suppose on the contrary that L is a free distributive
lattice over S in S and let τ : S → L be the canonical morphism. By
Theorem 1.3, there is a lattice homomorphism τ̃ : F (S) → L such that
τ̃ ◦α = τ . Since τ(S) generates L, τ̃ is onto. Let us show that τ̃ is more-
over one-to-one. This amounts to show that if

∧{τ(e) | e ∈ E} ≤ τ(f),
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then IE ⊆ f ↓. If this is not the case, there is some t ∈ IE with t 6≤ f .
But this implies τ(t) 6≤ τ(f), whence

∧{τ(e) | e ∈ E} 6≤ τ(f), a contra-
diction. This shows that F (S) ∼= L and α is a morphism, and not only
a weak morphism. Suppose now S is not a lattice. Then for some finite
E ⊆ S,

∧
E does not exist and IE is not a principal ideal. Hence, in

F (S) there exists a prime ideal P ′ that contains all α(i), i ∈ IE, but no
α(e), e ∈ E. By the property 1.1 2) defining morphisms, P = α−1(P ′) is
prime in S. This is not possible since α−1(P ′)∩E = ∅ but α−1(P ′) ⊇ IE.

4) By the above remark, the inverse image of a prime ideal of F (S) is not
necessarily prime in S. It is not difficult to characterize those ideals of
S that arise as inverse images of prime ideals in F (S).

Lemma 1.5. If P ′ is a prime ideal of F (S), then P = α−1(P ′)
(= {s ∈ S | {s}θ ∈ P ′}) is an ideal of S such that

(WP )∀e1, . . . , en 6∈ P, ∀f ∈ P, ∃t ≤ e1, . . . , en with t 6≤ f.

Proof. We have α(e1), . . . , α(en) 6∈ P ′, whence
∧n

i=1 α(ei) 6∈ P ′ and since
α(f) ∈ P ′,

∧n
i=1 α(ei) 6≤ α(f). If E denotes {e1, . . . , en}, this can be read

Eθ 6≤ {f}θ, that is IE 6⊆ f ↓. Hence there is t ∈ IE, that is t ≤ e1, . . . , en

such that t 6≤ f , as required.

Definition 1.6. An ideal satisfying axiom (WP ) of the previous Lemma
is called weakly prime. It is interesting to compare axiom (WP ) with the
following axiom (P ) that defines prime ideals among ideals of a distributive
semilattice :

(P ) ∀e1, . . . , en 6∈ P∃t ≤ e1, . . . , en, ∀f ∈ P, t 6≤ f.

Also, this definition is easily seen to be equivalent with that of a weak
prime element in the ideal lattice Id(S) of S as given in [5], p. 81. As a
consequence, the set X(S) of all weak prime ideals of S is closed in the
Lawson topology (see [5], p. 246). As such, it is a compact ordered space.
Since Id(S) is morever algebraic, we get a Priestley space. Let us make
things more precise and give direct proofs in the following lines.

If S a distributive semilattice, we denote by X(S) = (X(S), τ,≤) the
ordered space of weak prime ideals of S, where ≤ is inclusion and τ is the
topology generated by the sets r(a) (a ∈ S) and their complements, where

r(a) = {P ∈ X(S) | P 63 a}.
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This topology is the topology induced by the Lawson topology on Id(S),
as a consequence of Exercise 1.12, p. 147, in [5].

Theorem 1.7. The ordered space X(S) is a Priestley space whose dual
lattice is nothing else than F (S).

Proof. It is clear that X(S) is t.o.d.; to have a direct proof of its compactness
we argue classically, as in the lattice case, using the following adaptation of
the prime ideal theorem : if I is a proper ideal of S and F is an increasing
subset of S such that IE 6⊆ i ↓ whenever E ∈ Fin(F ) and i ∈ I, then there
exists a weak prime ideal P of S such that P ⊇ I and P ∩ F = ∅.

Let us now prove that X(S) is isomorphic to the Priestley dual X(F (S))
of F (S), by the dual map of α, that is by α∗ : P ′ 7→ α−1(P ′). Lemma 1.5
ensures that α∗ is a map X(F (S)) → X(S). Now we show that α∗ is onto.
Let P be a weakly prime ideal of S. Then P is the inverse image through α
of a unique prime ideal of F (S), namely Q = α(P ) ↓ (=

⋃{α(p) ↓| p ∈ P}).
The only thing to prove is that Q is prime in F (S). If not, then Eθ, F θ 6∈ Q
but Eθ∧F θ ∈ Q for some E, F ∈ Fin(S). This means E∩P = ∅, F ∩P = ∅
and IE∪F ⊆ p ↓ for some p ∈ P , which contradicts axiom (WP ) of 1.5. The
other verifications are routine, as well as the continuity of α∗, which follows
from the formula

α∗(r(a)) = r(α(a)).

From this theorem, it follows that X(S) does not characterize S, and
we have announced that X1(S) does not characterize S either (this will be
proved in Corollary 2.2). The pair of them does, however, as we proceed to
show.

Definitions 1.8. 1) Let X = (X,X1) be a structure such that X =
(X, τ,≤) is an ordered space and X1 ⊆ X. A decreasing open set O is
said to be of type 1 if O ∩ X1 is cofinal in O (for a clopen set O in a
compact ordered space, it amounts to asking that any maximal element
of O be in X1).

We denote by D(X ) or D(X) the set of all clopen decreasing subsets of
X and by D1(X ) the set of all O ∈ D(X ) of type 1. An element x ∈ X
is said to be of type 1 if {O ∈ D1(X ) | O 3 x} is a basis of decreasing
clopen neighborhoods at x.
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The structure X is of type 1 if it satisfies

x ∈ X1 ⇔ x is of type 1.

We also recall that a subset X1 of an ordered topological space X is
order-generating if for all x ∈ X, x ↓ ∩ X1 is non-empty and has x as
infimum ([5], p. 70). It is equivalent to ask that i) if X has a greatest
element 1, then 1 ∈ X1 and ii) if y 6≤ x, then y 6≤ x1 for some x1 ∈ X1

such that x ≤ x1. Moreover, if X1 is order-generating, any element of
X is dominated by some element of X1 and the whole space X is a
clopen decreasing subset of type 1.

We say that X = (X, X1) is a Priestley structure if

i) X is a Priestley space,

ii) X1 is dense and order-generating in X,

iii) X is of type 1.

2) We turn the class of all Priestley structures into a category P by
defining a morphism between Priestley structures X = (X,X1) and
X ′ = (X ′, X ′

1) to be a continuous order-preserving map h : X → X ′

such that

i) x ∈ X1 implies h(x) ∈ X ′
1, and

ii) h−1(O′) is of type 1 whenever O′ ∈ D1(X ).

3) If S ∈ S, its dual structure is X (S) = (X(S), X1(S)) and if X ∈ P , its
dual semilattice is D1(X ) (D1(X) is clearly a semilattice when ordered
by inclusion).

Lemma 1.9. If X = (X,X1) is a Priestley structure, it satisfies the
following improvement of the t.o.d. axiom :

(t.o.d1) if x 6≤ y, there exists O ∈ D1(X ) such that O 3 y and O 63 x.

Proof. This follows directly from order-generation and the fact that the space
is t.o.d. and of type 1.

Lemma 1.10. If S ∈ S and O ∈ D(X(S)), then O = r(e1) ∩ . . . ∩ r(en)
for some e1, . . . , en ∈ S. Moreover, O is of type 1 if and only if O = r(a) for
some a ∈ S.
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Proof. In the proof of Theorem 1.7, we defined an isomorphism α∗ from
X(F (S)) onto X(S), whence it follows that α∗−1(O) ∈ D(X(F (S))) and by
Priestley duality α∗−1(O) = r(Eθ) for some Eθ ∈ F (S). This gives the first
assertion with E = {e1, . . . , en}.

To prove the second assertion, suppose first Q ∈ r(a) where a ∈ S. Then
there is a prime P such that Q ⊆ P and P 63 a. This shows that r(a) is of
type 1. Conversely, suppose O = r(e1)∩ . . .∩r(en) is not of the form r(a) for
any a ∈ S. Then E = {e1, . . . , en} has no infimum. If Q is any weakly prime
ideal such that IE ⊆ Q and Q ∩ E = ∅, then Q ∈ O but Q is not contained
in any prime ideal P such that P ∈ O. Hence O is not of type 1.

Lemma 1.11. If S ∈ S, its dual structure X (S) is a Priestley structure.
And if X is a Priestley structure, its dual semilattice D1(X ) is distributive.

Proof. 1) From Theorem 1.7 we know that X(S) is a Priestley space.
Assertion ii) in Definition 1.8 follows from 1.6 and [5], p. 71 and p.
247. It remains to prove iii).

If P ∈ X1(S), that is, P is prime, and O ∈ D(X(S)) is such that
P ∈ O, then by the preceding Lemma, there are e1, . . . , en such that
O = r(e1)∩ . . .∩ r(en). Since P ∈ O, we have e1, . . . , en 6∈ P and since
P is prime, there is a 6∈ P with a ≤ e1, . . . , en. Hence P ∈ U ⊆ O for
some U = r(a) of type 1, as required.

Conversely, we must show that if P is of type 1, then P is prime. Let
e, f 6∈ P . Then P ∈ r(e)∩ r(f) ∈ D(X(S)). Since P is of type 1, there
is by the preceding Lemma some a such that P ∈ r(a) ⊆ r(e) ∩ r(f).
This means that a 6∈ P and a ≤ e, f , whence P is prime.

2) We now prove that D1(X ) ∈ S if X ∈ P . First D1(X ) is bounded,
with greatest element X by axiom ii) of 1.8. To prove distributivity,
let O, U, V ∈ D1(X ) be such that O ⊆ U ∪ V . Denote by max(O) the
set of maximal elements of O. Then for each x ∈ max(O), either x ∈ U
and there is Ox of type 1 such that x ∈ Ox ⊆ O∩U , or x ∈ V and there
is Ox of type 1 such that x ∈ Ox ⊆ O∩V . The various Ox (x ∈ max(O))
form a covering of O, from which we can extract a finite subcovering,
say O1, . . . , On with Oi ⊆ O ∩ U for i ≤ n (≤ m) and Oi ⊆ O ∩ V
otherwise. Let U1 =

⋃{Oi | i ≤ n} and V1 =
⋃{Oi | n < i ≤ m}. Then

O = U1 ∪ V1 with U1 ⊆ U and V1 ⊆ V .
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Theorem 1.12. The categories S and P are dually equivalent. The dual
of the free distributive lattice over S is the underlying Priestley space of the
dual of S.

Proof. We first extend the object mappings X : S → P and D1 : P → S to
functors in the usual way : X (f) = f−1 and D1(h) = h−1. We first have to
prove that X (f) and D1(h) are morphisms.

It is even not clear that X (f) is a mapping, that is, f−1(Q) is a weakly
prime ideal whenever Q is. If e1, . . . , en 6∈ f−1(Q) and a ∈ f−1(Q), there
is a t ≤ f(e1), . . . , f(en) with t 6≤ f(a). Since f is a morphism, there is
e ≤ e1, . . . , en with t ≤ f(e), and necessarily e 6≤ a otherwise t ≤ f(e) ≤ f(a).
The other verifications about X (f) are trivial or come from the equation

(X (f))−1(r(a)) = r(f(a)).

We show that D1(h) satisfies the equation (Mor) in 1.1 2). Suppose
O ⊆ h−1(U) ∩ h−1(V ) (O, U, V ∈ D1(X )). Then h(O) ⊆ U ∩ V . For each
x′ ∈ max(h(O)), there is x ∈ max(O) with x′ = h(x). Since x ∈ max(O),
x is of type 1, and so is x′. Hence there is Wx′ of type 1 with x′ ∈ Wx′ ⊆
U ∩ V . By the compactness of h(O), h(O) is covered by finitely many Wx′ :
h(O) ⊆ W = Wx′1 ∪ . . . ∪Wx′n ⊆ U ∩ V and O ⊆ h−1(W ) with W ⊆ U ∩ V .

Using Lemma 1.10, it is easy to see that the map rS : S → D1(X (S)) :
a 7→ r(a) is an isomorphism and the composition D1X is naturally equivalent
to the identity.

Before considering the composition XD1, we establish the second asser-
tion : if X = (X,X1), we have to prove that XF (D1(X )) ∼= (X, X1) or
equivalently, by Priestley duality, that F (D1(X ) ∼= D(X). We use the no-
tations of 1.2 and 1.3 : the correspondence (O1, . . . , On}θ 7→ O1 ∩ . . . ∩ On

is clearly an order embedding from F (D1(X )) into D(X) and it remains to
show that it is onto. Let U ∈ D(X). For y ∈ U and x 6∈ U , we have x 6≤ y
and by Lemma 1.9, there is O ∈ D1(X ) with O 3 y and O 63 x. A standard
double compactness argument shows that U is of the form U = O1∩ . . .∩On

for some Oi ∈ D1(X ).
Now an isomorphism ξX : X 7→ XD1(X ) is given by the composition of

the Priestley space isomorphism X → XD(X) : x 7→ Px = {O ∈ D(X) |
O 63 x}, the isomorphism XD(X) → XF (D1(X )) given above and the iso-
morphism α∗ : XF (D1(X )) → XD1(X ) given in Theorem 1.7. This gives
the map ξX : x 7→ {O ∈ D1(X ) | O 63 x} at the Priestley space level and it
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remains to show that

x ∈ X1 ⇔ ξX (x) ∈ X1(D1(X )).

Suppose first x ∈ X1. Then the weakly prime ideal {O ∈ D1(X ) | O 63 x}
is prime because if O1, . . . , On 3 x, then there is some O of type 1 such that
x ∈ O ⊆ O1 ∩ . . . ∩ On. Suppose now x /∈ X1. Since X is of type 1, there is
some U ∈ D(X ) with x ∈ U but for no O ∈ D1(X ) one has x ∈ O ⊆ U . By
a previous argument, U = O1 ∩ . . . ∩ On where Oi ∈ D1(X ) for all i. Hence
{O ∈ D1(X ) | O 63 x} is not prime.

2 Examples and dualisations

We first want to prove a fact that was announced in the introduction : the
Priestley topology (and order) on the prime spectrum of a distributive semi-
lattice does not characterize it. We need a general method for constructing
Priestley structures with a unique accumulation point.

Lemma 2.1. Let P = P1

·∪ ∞ be an infinite ordered set, topologized
as the one-point Alexandroff compactification of P1, considered as a discrete
topological space. Then (P, P1) is a Priestley structure if and only if

a) ∞ ≤ x for any x with x ↓ infinite,

b) x ≤ ∞ for any x with x ↑ infinite,

c) ∞ is not a greatest element of P ,

d) ∞ ↑ is finite, and

e) if x 6≤ ∞, then x 6≤ y for some y > ∞.

Proof. It is not difficult to show that P is a Priestley space if and only if
conditions a) and b) hold.

Suppose now (P, P1) is a Priestley structure. Since P is of type 1, any
maximal element of P is in P1 and in particular c) holds. Also, since ∞ /∈ P1,
∞ is not of type 1 by axiom iii) and some decreasing clopen V 3 ∞ is not of
type 1 and therefore admits a maximal element not of type 1. This means
that ∞ is maximal in V , whence ∞ ↑ \{∞} ⊆ −V . Since ∞ is the only
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point of accumulation of P , −V is finite and d) holds. Finally if x 6≤ ∞,
then x 6≤ ∧

(∞ ↑ \{∞}) by axiom ii) and e) follows.
Conversely, suppose (P, P1) satisfies all conditions of the Lemma. Then

P is a Priestley space (by a) and b)) in which P1 is dense. To show that
P1 is order generating, it suffices to verify ∞ =

∧
(∞ ↑ \{∞}), which is

equivalent to c). Let x ∈ P1. If ∞ 6≤ x, then x ↑ is finite by a), and {x ↓}
is a basis of clopen decreasing neighborhoods of type 1 at x. If ∞ < x, then
any clopen decreasing neighborhoods of x is of type 1, whence x is of type 1
in this case also. Finally, let us choose for each x > ∞ a clopen decreasing
Vx containing ∞ but not x. By c) and d), V =

⋂{Vx | x > ∞} is a clopen
decreasing neighborhood of ∞ that contains ∞ as a maximal element, and
that prevents ∞ from being of type 1.

As a corollary, we now give two non isomorphic distributive semilattices
S and T such that X1(S) ∼= X1(T ) (but of course X(S) 6∼= X(T )).

Corollary 2.2. Let P1 be the cardinal sum of an infinite antichain and
a diabolo D = {a, b, c, d} with a ≤ c, a ≤ d, b ≤ c, b ≤ d. Then there exist
at least two non isomorphic Priestley spaces P and P ′ such that (P, P1) and
(P ′, P1) are Priestley structures.

Proof. We just refer to Lemma 2.1 and define P = P1

·∪{∞}, P ′ = P1

·∪{∞′}
with a, b ≤ ∞ ≤ c, d and ∞′ ≤ a, b, c, d.

Note that the dual semilattices are not difficult to describe. Let L be the
distributive lattice that is the dual of the diabolo D = {a, b, c, d} as above, so
that L = {0, 2, 3, 4, 5, 6, 1} with 0 = ∅, 1 = D, 2 = a ↓, 3 = b ↓, 4 = a ↓ ∪b ↓,
5 = c ↓ and 6 = d ↓; and let B be the Boolean algebra of finite and cofinite
subsets of N. Then the distributive semilattice S that is dual to (P, P1) can
be realized as

S = {(i, x) ∈ L×B | x finite ⇔ i = 0, 2, 3 or 4}

while S ′ = D1(P
′, P1) is

S ′ = {(i, x) ∈ L×B | x finite ⇔ i = 0}.
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Our next task is a description of coproducts in S, using duality. It is an
appealing fact that Stone duality is required at some intermediate steps of
our argument.

In the following lemma, we use notations r1(a) of 1.12 and r(a) of 1.6.

Lemma 2.3. If S ∈ S and a, a1, . . . , an, b ∈ S, then

1) r1(a) = r(a) and −r1(a) = −r(a),

2) r1(a) ∩ . . . ∩ r1(an) \ r1(b) = r(a1) ∩ . . . ∩ r(an) \ r(b).

Proof. 1) Inclusions ⊆ are obvious. Thus r1(a) and −r1(a) form a parti-
tion of X(S) and 1) is proved.

2) We have ⊆ by 1). Let Q ∈ r1(a) ∩ . . . ∩ r(an) \ r(b) and let O be
a clopen neighborhood of Q. By Lemma 1.10, we may suppose that
O = r(c1)∩ . . .∩ r(cm) \ r(d). Hence Q 63 a1, . . . , an, . . . , c1, . . . , cm and
Q 3 b ∨ d. Because Q is weakly prime, there is e ≤ a1, . . . , cm with
e 6≤ b ∨ d. By Stone separation theorem there is a prime ideal P with
P 63 e and P 3 b∨d. This shows that O meets r1(a1)∩. . .∩r1(an)\r1(b),
as required.

Let for i ∈ I, Si be a distributive semilattice, let Xi = ((Xi, τi,≤), X1i)
be its Priestley dual, (X1i, τ1i) be its Stone dual. Denote by X the cartesian
product of all Priestley spaces (Xi, τi,≤), by Y the cartesian product of all
Stone spaces (X1i, τ1i) and by S the semilattice of compact open subsets of
Y (Stone dual of S). Then we have the following result.

Lemma 2.4. With the above notations, the mapping

ξ : X → X(S) : x 7→ {O ∈ S | O 63 x}

is an isomorphism (of Priestley spaces).

Proof. a) Let us first show that ξ is a map, that is, ξ(x) is weakly prime.
Suppose O1, . . . , On 6∈ ξ(x) and U ∈ ξ(x) : we have to find W ∈ S with
W ⊆ O1 ∩ . . . ∩On and W 6⊆ U .

Remember that each V ∈ S is a finite union of products
∏

i Vi where
each Vi is compact open in (X1i, τ1i), and Vi = X1i for all but finitely
many i. Let V be one of the Oj (j = 1, . . . , n). Then x ∈ V hence x
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is in the closure of some product
∏

i Vi : let us call it
∏

i V
(j)
i . If on the

other side V is U , then x /∈ U =
⋃

k

∏
i U

(k)
i and for each k there is some

ik with xik /∈ U
(k)
ik

. For each i, let Zi = V
(1)
i ∩. . .∩V

(n)
i \⋃{U (k)

ik
| ik = i}.

By Lemma 2.3, xi ∈ Zi for each i, whence Zi 6= ∅. Choose a point wi

in each Zi. Because (X1i, τ1i) is a Stone space, there is some compact

open Wi in X1i with wi ∈ Wi ⊆ V
(1)
i ∩ . . . ∩ V

(n)
i . Let W =

∏
i Wi. By

construction, W fulfills all requirements : W ∈ S, W ⊆ O1 ∩ . . . ∩ On

and W 6⊆ U (since w = (wi) ∈ W and w /∈ U).

b) It is clear that ξ is one-to-one : if x 6= y in X, there is some clopen
decreasing subset U of X that separates x from y. By Lemma 2.3, we
may assume that U = O for some O ∈ S. Hence ξ(x) 6= ξ(y).

Let us show that ξ is onto. If P is a weakly prime ideal of S, the
family of all O, −U with O /∈ P and U ∈ P has the finite intersection
property. Indeed, if O1, . . . , On /∈ P and U1, . . . , Um ∈ P , then, by
Lemma 2.3,

P ∈ r(O1) ∩ . . . ∩ r(On) \ r(U1 ∪ . . . ∪ Um)

= r1(O1) ∩ . . . ∩ r1(On) \ r1(U1 ∪ . . . ∪ Um)

and therefore O1 ∩ . . . ∩ Om ∩ (−U1) ∩ . . . ∩ (−Um) 6= ∅. By the com-
pactness of X, there exists x ∈ X such that x ∈ ⋂{O | O /∈ P}∩{−U |
U ∈ P}, showing P = ξ(x).

c) One proves that ξ is an order-embedding in the same way that ξ is
one-to-one and it remains to prove that ξ is continuous. A basic open
set in X(S) is of the form

O = r(O1) ∩ . . . ∩ r(On) \ r(U)

whence ξ−1(O) = O1 ∩ . . . ∩On \ U , which is open in X.

Theorem 2.5. If (Xi, X1i) is a Priestley structure for each i ∈ I, then
(
∏

Xi,
∏

X1i) is also a Priestley structure. Moreover a clopen decreasing set
is of type 1 if and only if it can be written as a finite union of basic clopen
decreasing sets of type 1, that is in the form

n⋂

k=1

pr−1
ik

(Ok)
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where Ok ∈ D1(Xik) for each k.

Proof. The Priestley isomorphism ξ of Lemma 2.4 extends to a Priestley
structure isomorphism by defining X1 = ξ−1(X1(S)), and we shall prove
that X1 =

∏
Xi1. Recall first that Stone duality gives an isomorphism x 7→

ϕ(x) = {O | O 63 x} from the space Y =
∏

Xi1 onto the space of prime ideals
of its dual semilattice S. This gives the following sequence of equivalences
(using notations of the proof of Lemma 2.4) :

x ∈ ∏
Xi1,

ϕ(x) = {O ∈ S | O 3 x} is prime in S,

ξ(x) = {O ∈ S | O 3 x} (= ϕ(x)) ∈ X1(S),

x ∈ X1.

To prove the second assertion, compose the isomorphisms r : S → D1X(S)
(given by Priestley duality) and ξ−1 : D1X(S) → D1(X, X1) (given by
Lemma 2.4) to get an isomorphism S → D1(X, X1) sending U on {x | ξ(x) ∈
r(U)} = {ξ | ξ(x) 63 U} = {x | x ∈ U} = U . Any U ∈ S is a finite union of
basic open sets in

∏
Xi1, of the form

n⋂

k=1

pr−1
ik

(Uk),

Uk compact open in (X1i, τ1i), and it remains to observe that this means Uk

is of type 1 in (Xi, τi,≤).

We end by a negative result. It is well-known that a bounded distributive
lattice is boolean if and only if its prime spectrum is an antichain. This is
no longer true if we consider bounded distributive semilattices, as shown in
the following lines.

Proposition 2.6. A bounded distributive semilattice is a boolean lattice
if and only if its weak prime spectrum is an antichain. There exist bounded
distributive semilattices whose prime spectrum is an antichain but whose weak
prime spectrum is not an antichain.
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Proof. Let S be a bounded distributive semilattice whose weak prime spec-
trum X(S) is an antichain. Since X1(S) is order-generating in X(S) we have
X(S) = X1(S), whence S is a lattice, and the result is true in this case.

To prove the second assertion, it suffices to consider any Priestley struc-
ture (P, P1) as defined in Lemma 2.1 for which P1 is an antichain and ∞ < x
for finitely many x ∈ P1.
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Added in proof. While this paper was submitted, we have been aware that
Guram Bezhanishvili and Ramon Jansana have found similar results that
will appear in a paper untitled “Duality for distributive and implicative
semi-lattices”. Among other results they give a dualisation of usual ho-
momorphisms between semi-lattices.
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