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Abstract

Constructing an optimal portfolio is a critical decision for investors. The classic portfolio models generally
consider mean and variance of return criteria, which are mostly intended single objective and have been analyzed and
studied under conditions of certainty. But in the real world problem of portfolio selection, is a multi-objective problem
and in addition to the criteria of mean and variance of return, other criteria such as liquidity risk should also be considered.
On the other hand, in practice we are faced with a vague inaccurate data and portfolio selection problem must be studied
under conditions of fuzzy uncertainty. In this paper, we have developed a new fuzzy multi-objective programming model
based on mean-variance-skewness model for optimal portfolio selection under fuzzy uncertainty. The objective functions
include maximizing the expected return, maximizing skewness or the chance to gain expected returns and minimizing
liquidity risk. Rates of return, rates of turnover, and the maximum number of types of stocks included in the portfolio
have been considered as triangular fuzzy numbers. To solve this problem an elitist non-dominated sorting genetic
algorithm (NSGA-II) has been developed. Vector evaluated genetic algorithm (VEGA) and non-dominated sorting
genetic algorithm (NSGA) were used to compare and evaluate the performance of the proposed solving method. Finally,
the results obtained from the algorithms output are compared and analyzed, which indicates a higher efficiency of the
proposed solving method compared to other methods.

Keywords: portfolio selection problem, the mean-variance-skewness model, NSGA-II algorithm, multi-objective
programming, fuzzy numbers

1. Introduction

The main goal of modeling portfolio is to help the investor in optimal portfolio selection according to his
preferences and interests as well as the decision environment [1]. In 1950, Harry Markowitz provide a basic portfolio
model that has become the basis for modern portfolio theory. He was the first to express the concept of the portfolio and
diversification as a formal way. He showed quantitatively why and how portfolio diversification can reduce portfolio risk
for an investor [2]. Markowitz mean-variance model is the most famous and most popular approach to the portfolio
selection problem. The most outstanding point of interest in Markowitz model is to consider investment risk not only
based on the standard deviation of returns of a stock but to consider the risk of the set of investment [1,3].

The mean-variance model has several simplifying assumptions and several weaknesses, which leads to inefficiency
in the real-world problems. The criterion of return variance in its high state has the behavior like low return which has
undesirable behavior because the high return also contributes in increasing the variance. In fact, when the probability
distribution of stock returns is asymmetric, the variance will be an inefficient measure of investment risk. To overcome
the weakness of variance risk measure of Markowitz model, some researchers have begun to use other risk criteria to
determine the risk of their portfolios [4]. One of the solutions proposed is the application of the criteria of return
distribution skewness in optimal portfolio selection so that, mean-variance-skewness model was introduced [5,6].

On the other hand, in most studies, the risk of an asset is identified as a random variable with a probability
distribution of the returns. But in a real investment, returns of risky assets are usually in an uncertain economic
environment and varies from time to time. So, since there are a number of uncertain parameters that are different from
the random effects of financial markets, such as economics, politics, laws and regulations, people's subjective factors,
etc., it is impossible for the investor to obtain accurate, probability distribution of returns of risky assets. In practice,
people's subjective factors should be considered in the decision-making portfolios, and these factors are affecting financial
markets. To get public opinion and uncertainty in the financial markets in terms of our calculations, fuzzy methods are
generally more appropriate than probability methods. So it is valued to apply fuzzy set theory to evaluate the uncertainty
in the financial markets [4,5,7].
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Also, disregarding the portfolio liquidity risk and transaction costs, modeling and solving portfolio selection
problems for single-objective or converting a multi-objective portfolio selection model into a single-objective problem
and solving it at a later stage, have led to models and methods that are far from investment issues in the real world and
have lost their effectiveness [8,9].

Recently, some researchers have tried to reduce vulnerabilities of mean-variance Markowitz model. Ammar and
Khalifa [10], in their article using fuzzy intervals, modeled the portfolio optimization in a manner that minimizes
investment risk so that, return more than a specified amount will be determined. They solved their nonlinear programming
model by using the Lagrange multipliers. The result is the allocation of funds to each investment considering the budget
restrictions. Huang [11,12] defined fuzzy-semi-variance as the main variable of portfolio risk and accordingly, presented
mean-semi-variance fuzzy model. Liu and Zhang [3] developed a multi-objective portfolio optimization model based on
fuzzy mean-semi variance model for portfolio selection. They proposed two mean-semi-variance probability model with
the real constraints. For solving proposed models a fuzzy multi-objective programming method is used to convert them
into a single objective model and then a genetic algorithm has been designed to solve it. Khalifa and ZeinEldin [8]
presented a fuzzy programming model for multi-objective portfolio selection model. They considered fuzzy numbers as
objective function coefficients and proposed α cutting technique and simulated annealing meta-heuristic methods to solve 
the problem. Shah Mohammadi et al. [5] modeled a portfolio selection problem based on the mean-variance-skewness
model, where stock returns are assumed to be fuzzy variables and to solve this nonlinear model, a genetic algorithm with
the neural network was used. Shibt al-Hamdi et al. [13] used Genetic Algorithm NSGA-II in a deterministic multi-
objective portfolio optimization problem and demonstrated this solution has higher efficiency compared to other methods
for solving multi-objective problems. Delvi et al. [14] adopted a multi-objective genetic algorithm to select the optimal
portfolio of facilities of Melli banks in Isfahan province. The results show that the optimal portfolio of facilities that has
been achieved by the multi-objective genetic algorithm is different from the bank's current portfolio and is covering
different policies and restrictions prevailing lending and is more efficient.

The aim of this paper is to develop a new fuzzy multi-objective programming model based on Mean-variance-
skewness model for optimal portfolio selection under conditions of fuzzy uncertainty. The objective functions include
maximizing the expected return, maximizing skewness or a chance to obtain expected returns and minimizing liquidity
risk. Rates of return and rates of turnover, and the maximum number of types of stocks included in the portfolio have
been considered for triangular fuzzy numbers. To solve this problem, a genetic algorithm NSGA-II has been developed
and its performance was compared and analyzed by genetic algorithms VEGA and NSGA. Thus simplifying assumptions
in modeling and solving portfolio selection problem is reduced and proposed model is more efficient in real-world
problems.

The paper is organized as follows. In section 2 the exact definition of the problem and its mathematical model
have been presented. The methodology of problem-solving and multi-objective genetic algorithms have been developed
and described in Section 3. In section 4, the computational results and comparisons have been expressed in order to
demonstrate the applicability and efficiency of the model and the solving method. The conclusions and directions of future
work are provided in Section 5.

2. Problem Formulation

2. 1 Expected value, variance and skewness of fuzzy variables
Professor Lotfi A. Zadeh in 1965 for the first time with the introduction of fuzzy set theory provided preparations

of inaccurate information modeling and approximate reasoning with mathematical equations that in itself brought
enormous changes in mathematics and classical logic [7,8]. The possibility theory is one of the most important issues of
fuzzy set theory which is used to deal with most phenomena of the real world in which there is uncertainty. This theory
is somewhat similar to classical probability theory in crisp sets [5]. In order to eliminate the weaknesses of the possibility
theory, Liu and Liu in 2002 proposed the credibility theory as a rival to the possibility theory. According to this theory,
the purpose of the credibility of a fuzzy event is the chance of a fuzzy event [15].

Suppose that r~ is a fuzzy variable with membership function µ , and k and u are real numbers. Then the possibility

and the necessity of a fuzzy event are obtained respectively from the equations (1) and (2).

ku,(u)Supkrpos ≥=≥ µ}~{ (1)

(u)SupkrposkrNes
ku

µ
<

−=<−=≥ 1}~{1}~{ (2)

The credibility of a fuzzy event is equal to the arithmetic mean value of the possibility and the necessity of a fuzzy
event and its value is calculated from equation (3).

)krNeskrposkrCr }~{}~{(
2

1
}~{ ≥+≥=≥ (3)
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As a result of the expected value of a fuzzy variable of r~ is obtained from the equation (4).

{ } { }∫∫
∞−

∞

≤−>=

0

0

~~)~( dkkrCrdkkrCrrE (4)

With the expected value, variance and skewness of fuzzy variable r~ can be calculated by the equations (5) and (6).

]))~(~[()~( 2rErErVar −= (5)

]))~(~[()~( 3rErErSk −= (6)

If ),,(~ cbar = is a triangular fuzzy variable (Fig. 1.), membership function and its credibility will be as the

equations (7) and (8) [15].

Fig. 1: A triangular fuzzy variable
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Therefore, the expected value, variance, and skewness of each triangular fuzzy variable are obtained from the
equations (9), (10) and (11) [16].
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Where ab −=α and bc −=β .

)]()[(
32

)(
)~(

2

abbc
ac

rSk −−−
−

= (11)

That shows if abbc −≥− , then 0)~( ≥rSk and if abbc −≤− then 0)~( ≤rSk . In particular if )~(rSk is

symmetric, then bcab −=− and 0)~( =rSk . If ba = then )~(rSk achieves the maximum value 32/3)( ac − and, if

cb = achieves the minimum value 32/)( 3ac −− [16].

2. 2 Liquidity risk
Liquidity is one of the most important criteria for investors while the formation of the Portfolio. The ability of

quick transaction of a huge amount of stock at a low cost and the price effect is called "liquidity". The low price effect
means that asset prices have not much changed in the interval of an order to buy [17]. In fact, liquidity and liquidity risk
include the main properties and microstructure factors of the market, which have threatened people's capital and play a
crucial role in the investment decision to buy and sell their stocks. Illiquidity occurs when the stock price in response to
low trading volumes has changed much, in fact, the lack of liquidity may have a negative impact on the stock's value [18].

Liquidity is a multi-dimensional measure, and there is no unique criterion that would cover all aspects of liquidity.
Therefore, several different criteria are used that each of which represents a dimension of liquidity. So far, many measures
have been introduced for liquidity, including the value of the transaction, the number of transactions, trading volume, and
the difference between offered bid and buy prices [3,17]. Therefore liquidity of an asset cannot be accurately calculated.
One of the most effective and efficient solutions is to use fuzzy numbers to express the liquidity of assets. Asset turnover
rate is a factor that can reflect the liquidity of assets. Here, we assume i-th asset turnover rate is shown by triangular fuzzy

number ),,(
~

iiii lclblal = . As a result, the portfolio turnover rate ),...,,( 21 nxxxx = is calculated through the equation

(12).
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According to equation (9), the classic possibility of the mean value of the asset portfolio ),...,,( 21 nxxxx = turnover

rate can be calculated.
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Also in this paper, possibility variance of fuzzy turnover rate is used as a measure of liquidity risk calculated based
on the equation (10).

2. 3 Fuzzy multi-objective optimization model for portfolio selection
Consider the optimal portfolio selection problem of n risky assets under conditions of fuzzy uncertainty. Rates of

return and turnover rates of n assets, the maximum accepted risk of the portfolio and the minimum accepted turnover rate
of the portfolio by investor and a maximum number of types of assets in the portfolio have been marked by triangular
fuzzy numbers. Maximizing expected return on a portfolio, maximizing skewness or a chance to obtain higher expected
returns and minimizing liquidity risk simultaneously, are investor’s objectives. He needs for less than or equal portfolio
return risk and liquidity portfolio greater than or equal to a predetermined value. On the other hand, investors intend to

hold q~ types of assets in their portfolios. The variables and parameters are as follows.

ir
~ : The rate of return on risky assets i ( ni ,...,2,1= ), so that ),,(~

iiii cbar =
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pR
~

: Portfolio return rate

0
~r : The maximum acceptable return risk of the portfolio for the investor, so that ),,(~

0000 cbar =

il
~

: The rate of turnover on risky assets i ( ni ,...,2,1= ), so that ),,(
~

iiii lclblal =

pl
~

: Portfolio turnover rate

0

~
l : The minimum acceptable turnover risk of the portfolio for the investor, so that ),,(

~
0000 lclblal =

ix : Investment ratio in risky assets i ( ni ,...,2,1= )

q~ : The maximum number of types of assets in the portfolio, so that ),,(~ qcqbqaq =

For modeling and formulating this problem as a mathematical expression, we suggest the following portfolio
optimization model (P1) which is based on mean-variance-skewness model.
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The objective function (14) shows the maximization of expected portfolio returns. The objective function (15)
states skewness maximization or the chance to obtain higher expected returns and the objective function (16) indicates
the minimization of liquidity risk. Constrain (17) ensures that the portfolio return risk is smaller than a predetermined

fuzzy number 0
~r . Constrain (18), shows that the average value of the portfolio turnover rate is not less than the proposed

minimum level of 0

~
l . Constrain (19), shows that the sum of assets in the portfolio is equal to one. Constrain (20), indicates

that the number of assets in the portfolio must be less than or equal to the given fuzzy numberq~ . When you want to de-

fuzzy the fuzzy number q~ , any real number may be obtained, since the number of types of stocks included in the portfolio

is necessarily an integer, therefore in order to overcome this problem, by using the floor function converting this number
to an integer one and then it is used in modeling and solving. Constrain (21) shows reasonable limits. Using the equations
(9-13) fuzzy model (P1) has been de-fuzzy and classical model (P2) is obtained as follows.
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3. Solution Methodology
To solve the portfolio selection optimization problem in the primary studies, the exact methods such as linear

programming, nonlinear programming, and goal programming have been used. But since it has been proven that portfolio
selection optimization problem such P2 model has a high complexity, achieving optimal solution for the problem with
large dimensions and even medium in a reasonable time is not possible [3,5,6]. Thus many attempts have been performed
to obtain near-optimal and high quality solutions by employing heuristic and meta-heuristic methods instead of exact
methods [6,9]. One of meta-heuristic methods that properly has coped with solving this kind of problem is genetic
algorithm [13,14]. Meta-heuristic NSGA-II algorithm is one of the most versatile and powerful genetic algorithms for
solving multi-objective optimization problems and its efficiency in solving various problems has been proven. This
algorithm was introduced in 2000 by Deb et al. [13]. In this paper, in order to solve the multi-objective portfolio selection
problem optimization P2 that its model was presented in the previous section, a multi-objective NSGA-II algorithm have
developed as follows.

3. 1 Representation of chromosome and generation of initial population
On the problem of optimal portfolio selection, a solution ),...,,( 21 nxxxx = can be represented by chromosome

),...,,( 21 ncccc = , so that genes jc are restricted in the range of[ ]1,0 . For example k-th chromosome will be as follows.

0.6400.180.190.210.35000.140.06kC =
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The relationship between feasible solution and chromosome can be presented as the expression (30), ensuring that

1
1

=∑
=

n

j

jx is always true.

n1,2,...,j,
ccc

c
x

n

j
j =

+++
=

...21

(30)

According to equation (30), the solution associated with chromosome kC is as follows.

0.36100.1000.1070.1190.200000.0790.034kx =

The initial population size is considered equal to an integer and the above-mentioned process will be repeated with
the number until the initial population will be produced and they will be indicated by the notation of sizepopCCC −,...,, 21 .

3. 2 Handling the constrain of maximum number of types of stocks in the portfolio
To satisfy constrain of maximum number of types of stocks in the portfolio (constrain 28), a random number less

than or equal k is generated and is called t. Then, if the number of genes higher than zero in the chromosome is larger
than t, we hold t numbers of the largest values of jx and put the other jx ’s zero. In the next step, to modify chromosomes

and meet the constrain (27), again the equation (30) is used and normalization of genes will be conducted. For example,

if the number of genes of the chromosome is 10=n , the maximum number of types of stocks in the portfolio is 6=k ,

then 5=t will be achieved. Chromosome kC presented in the section above is modified as follows, which is called kC ′ .

The solution associated with the chromosome kC ′ , has been normalized according to equation (30), and it is called kx' .

0.6400.180.190.210.350000kC ′ =

0.40800.1140.1210.1340.2230000kx' =

3. 3 Crossover and mutation operators
Many famous crossover operators for chromosomes in the optimal portfolio selection problem are available [3].

We use single-point crossover operator. First, two chromosomes are selected as parents. A random number between 1
and n-1 has been generated to determine the crossing point of two chromosomes. Then two child chromosomes are
generated by moving genes of two parent chromosomes from the crossing point.

Crossing point

0.6400.180.190.210.35000.140.06Parent 1

0.050.42000000.100.140.29Parent 2

After applying single-point crossover operator

0.050.420000000.140.06Child 1
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0.6400.180.190.210.3500.100.140.29Child 2

After the generation of child chromosomes, due to constrain of the maximum number of types of stocks in the
portfolio and the equation (30), they will be normalized and modified if needed to have chromosomes that are valid. If,

for example, the maximum number of types of stocks included in the portfolio are 6=k and 5=t , we have:

After modification and validation

0.0750.6270000000.2090.089Child 1

0.38800.1090.11500.2120000.176Child 2

To carry mutations in chromosomes, first two genes from chromosomes are randomly selected and their values
are exchanged with each other, such as the following example:

Random selection of two genes

0.40800.1140.1210.1340.2230000Initial chromosome

0.40800.11400.1340.22300.12100Mutated chromosome

3. 4 Evaluation of the solutions based on NSGA-II algorithm
In the NSGA-II algorithm, first, the number of children (Qt) can be built, using the parental population (Pt),

respectively using crossover and mutation operators. Two parents and children populations have been combined with
each other and create the population Rt with the size of 2N. Then the fast non-dominated sorting approach will be used to
categorize the entire population Rt. According to this approach, the solutions will be put in different categories with
different non-dominated fronts. The total number of categories has been shown with k. All solutions in categories or the
first front (F1) are the best non-dominated solutions of the population and the worst solutions of the population will be in
the last front (Fk). It is clear that in terms of the value of fitness, the most fitness will be assigned to the solutions of the
first front population and this fitness will be decreased in the next fronts so that, the lowest fitness will be assigned to the
solutions of the last front. In Fig. 2., the image of categorization of the solution based on the fast non-dominated sorting
approach for the problem with two-objective minimization has been shown [19].
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Fig. 2: Fast non-dominated sorting approach

In the next step, based on sorting solutions, the next generation will be filled with these fronts. Filling the next
generation (Pt+1) has been started with the best non-dominated front and then respectively with the second non-dominated
front and the third and so on, it continues until Pt+1 would be filled. Since the size is equal to 2N all members cannot be
placed in Pt+1 and the remaining solutions will be easily deleted. Fig. 3. shows the performance of the algorithm NSGA-
II [19].

Fig. 3: Schema of performance of the algorithm NSGA-II

In regard of the solutions eliminated in the last front by the elitism operator more skills should be used and the
solutions in the area with less crowded should be maintained. In fact, to observe the principle of the density of the
solutions, the solutions which are in smaller crowding area have priority to fill Pt+1.

4. Computational Results
In order to evaluate the performance of the model and the proposed solution, random portfolios were selected from

among the top 50 companies in Tehran Stock Exchange in the fourth quarter of 2015. The triangular distribution function
of turnover and return rates have been obtained for 50 companies chosen through historical data from financial software
Rahavard Novin during 2014 to 2015. Maximum of types of stocks in the portfolio selected was considered as a random

fuzzy number ( q~ ) that, the amount of which is determined by investors. Problems were classified into two groups with

small and large size. Problems with the maximum number of 10 types of stocks were considered as small-scale problems
and with a minimum of 15 types of stocks were considered as large-scale problems.

In order to compare and evaluate the performance of the proposed solution method, two VEGA and NSGA
algorithms were also developed. The above-mentioned three algorithms have been coded with MATLAB (R2014a)
software. To run the program coded, a personal computer with a 2.3 GHz seven core processor and 8 GB main memory
has been used. In order to ensure a fair comparison among the three algorithms developed, their parameters were set
identically. The initial population size is 100 and crossover and mutation rates are respectively 0.1 and 0.8. Number of
generations produced as a condition for stopping the algorithm was applied and were set as 2,000. For each of the problems
produced, each algorithm was run five times and the results are expressed as the average of the value obtained.

There are numerous and diverse indicators to compare and evaluate the performance of multi-objective meta-
heuristic algorithms. In this paper two useful indices of the quality and dispersion have been used for comparison. Quality
index compares the quality of the Pareto solutions obtained by each method. To calculate the quality index, all solutions
obtained by all three methods has been levelled together and it is specified that how many percent is assigned to each
method [19]. The higher the percentage, the higher quality algorithm has. Dispersion index is used for determining the
non-dominated solutions found on the optimal frontier. Dispersion index is defined as follows:

∑ =
−=

N

i

i
t

i
t yxD

1
)max( (31)
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In equation (31), i
t

i
t yx − represents the Euclidean distance between the two solutions of i

tx and i
ty on the

optimal frontier. Test results for small-scale problems are provided in Table 1 and for large-scale problems in Table 2
[19].

Table 1: Comparison of results obtained for small-scale problems

Dispersion indexQuality indexProblem information

NSGA-IINSGAVEGANSGA-IINSGAVEGA
The maximum number

of types of stocks in
the portfolio

Number
of types
of stocks

Problem
No.

654.3471.1327.472.3714.5113.12(2,4,5)81
608.9529.3294.155.8126.0418.15(4,5,7)82
634.4435.1309.777.1317.115.76(3,5,6)83
691.6376.9169.386.424.129.46(2,3,6)94
537.1443.6371.861.4517.0621.49(3,5,7)95
647.5367.4287.994.595.410(4,5,6)96
671.6638.2297.387.5111.431.06(4,5,7)107
656.4543.7301.610000(3,4,8)108
716.7426.3249.294.145.860(5,5,7)109
653.9481.5341.272.4921.096.42(4,6,6)1010

Table 2. Comparison of the results obtained for large-scale problems

Dispersion indexQuality indexProblem information

NSGA-IINSGAVEGANSGA-IINSGAVEGA
The maximum number

of types of stocks in
the portfolio

Number
of types
of stocks

Problem
No.

6157.28943.71905.495.164.840(6,9,10)201
134627953.19462.387.626.575.81(12,15,17)202
114829126.46142.710000(5,7,8)203
106948967.97345.980.6915.174.14(12,14,14)304
9652.86128.45849.576.4515.088.47(8,8,9)305
116536455.39416.498.291.710(11,12,15)306
102647664.84391.210000(10,10,10)307
119469749.18438.696.142.731.13(15,16,20)308

The results of carrying out tests prove that the proposed model and developed NSGA-II algorithm have a high
performance for modeling and solving the multi-objective optimization portfolio problem under fuzzy uncertainty
conditions. The proposed solution method based on NSGA-II algorithm has priority to produce Pareto solutions,
according to both the quality and dispersion indices in the small and large-scale problems in comparison with VEGA and
NSGA algorithms.

5. Computational Results
In this paper, a fuzzy multi-objective programming model based on mean-variance-skewness model was developed

for optimal portfolio selection that includes less simplifying assumptions than the other available models. The proposed
model includes three objective functions of maximizing expected return, maximizing skewness or the chance to gain
higher expected returns and minimizing liquidity risk. In this model, rates of return, rates of turnover, and the maximum
number of types of stocks included in the portfolio were considered triangular fuzzy numbers. To solve this problem an
elitist non-dominated sorting genetic algorithm (NSGA-II) was developed. To compare and evaluate the performance of
the model and the proposed solution, the top 50 companies in Tehran Stock Exchange in the fourth quarter of 2015 were
considered and based on historical data, the triangular distribution function of expected rates of return and financial
turnover rates are obtained. Proposed solution method with two vector evaluation genetic algorithm (VEGA) and non-
dominated sorting genetic algorithm (NSGA) was compared and analyzed based on two quality and dispersion indicators
in small and large-scale problems. The results show that the proposed solution based on NSGA-II algorithm has the very
acceptable performance for the production of Pareto solutions, with high quality and variety and a higher dispersion than
the VEGA and NSGA algorithms. In other words, the proposed method gives the more optimal portfolio to the investors.
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Considering the cost of transactions and other types of risk in modeling as well as developing innovative hybrid
algorithms to solve the problem for future research are recommended.
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