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In this paper we consider sequential decision processes of the
following type : A system undergoes changes of state at random
intervals. Immediately after such transitions a decision may be
made to place the system instantaneously in another state, or to
leave the state unchanged. Associated with decisions and transi-
tions, as well as with the system’s resting in the various states arve
payoffs. The object is to determine decision rules which will maxi-
mize the average payoff per unit time. Decision processes of this
type may be called stochastic control processes. They arise for
instance in conmection with the maintenance and replacement of
equipment and in the control of inventory and production. We
shall consider one inventory model of fairly general structure which
may be described as follows (**) : Suppose that demand for a
product arises at time intervals whose length is a random variable
subject to a given but arbitrary distribution. The problem of the
optimal inventory policy has been solved ['].

Under the following additional assumptions :

1) Demands at different times are stochasticaly independent, hut
on each occasion demand may depend on the length of the time
interval sinece the last demand.

2) Delivery times are fixed and different from zero. No demand is
lost during stock-outs.

(%) Présenté par L. Derwidus, le 17 soptembre 1964,

{**) An emlier version of this model in terms of discounted cost was
studied in [*}. I am indebted to Prof. de Ghellinek for the suggestion to
attempt an approach in average cost terms. {Cf. also [?])
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3) Costs of storage and shortage are proportional to storage and
shortage respectively but with different coefficients of propor-
tionallity.

4) The cost of ordering consists of a fixed part and a part propor-
tional to the size of the order.

5) Future costs are discounted at a constant exponentional discount
rate,

In this paper an alternative method of solution is developed
which is moreover applicable to a larger class of soquential decision
problems wnder risk. It is based on the minimization of average
cost rather than of discounted expected costs and is thus more
elosely related to the approach of Howard [2]. However the following
characteristic difference arvises. In Howard’s schema, the decision %
influences the transition probabilities Pl from i at the next tran-
sition. In the inventory problem it is more natural to say that the
decision brings about an immediate change in the state i, The
difference in the timing of the change -— and of the cost — is not
immaterial when either average cost per unit time or discounted
total cost is considered —it is irrelevant only when the undiscounted
sum ol cost is under consideration. Formally, however it will turn
out that the resulting cquations are closely similar to those of
Howard.

Seetion 1 presents the general model, section 2 its application
to the inventory problem,

1. — Consider a finite set S of states 7. Tho probabilities of a
transition from ¢ to j depends jointly on state j and the time ¢
since the last transition

quslt)
but is independent of all previous events. The transition times are
thus « regeneration points» in which the process is Markovian.

Immediately after a transition the state ¢ may be changed to a
state in & set S;. The following payoffs {or costs, when negative)
arise
aift) dt  payoff during a small time interval d¢ when the system

is in state ¢ at a time ¢ after the last transition.
aty3(t) payoff due to a transition from 7 to j which takes place
after an interval ¢ since the last transition.
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bir payoff due to a decision which changes the state instan-
taneously from ¢ to & ; of course by = 0.
8 a terminal payoff when the system is terminated in state .

Let & = 3(i) denote a decision rule. We shall assume that the seb
of possible actions in the various states are such that every state
can be reached from every other state with a positive probability
if a suitable decision rule is assumed, This property shall be called
ergodicity. It is a natural extension of the concopt of an ergodic
Markov chain.

Tn an ergodie system a decision rule now defines a recurrent
chain of states. Consider now sequences of # decisions under & fixed
decision rule. The total payoff V() is then recwsively defined by
the following relationship

(1) V{;('Ij) = 8i.
o W

(2) Vali) = ba + Z [ Prsft) - [ ] ax(t) dt + ax; + Vn—l(j)] di
; bkt ] Yo

n=1,...

where & = () is given by the decision rule.
Define

2P

Py = J pulf) dt
H]

A2 ol
ik — b + ; J prilt) fer; + I tilT) dx] dt.
- 4o

) 0
}

Then (2) assumes the form
®) Vali) = g+ > 2o Varal
)
In particular for optimal decision rules

Vi) = Max [g, + ZPaﬁ),’ Vo]
5
i
(4) — Max [gu + me Vo))
L
i
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Equation (4) corresponds to the formula {3.3) of Howard [2] for
ergodie Markov chains, The problem has thus been reduced to one
m terms of an ordinary, ergodic Markov chain.

Let now V,(i) be decomposed into an average payoff & per
decision times the number of decisions » plus a residual term (),

(6) Vauld) = n . 0+ vafd).

Upon substitution in (3) and cancellation of terms we have
© i) 5= g+ > 21y vl
i

where % = 3{#) is given by the decision rule.

For ergodic systems, as n - oo the states and hence the transi-
tions are realised with constant probabilities independent of the
initial positions, and limits of vp{t) must exist which are also
independent of the initial values. Then (5) becomes

(1) o) + 5 = g + Zm-f o(5)

where v(z) denotes the residual term » for an infinite horizon of
decisions. An optimal decision rule is now defined as one which
maximizes 7.

¥ = —{8) + Max [ + Z?’s-mf - v(7)]
a{f)
(8) = — (i) + Max [gu + Z]f‘kf s}l
k -

Consider the parallel system of equations determining the state
probabilities

(9) W Z T Py
7

Upon multiplication of (7) by #; and summation one has

vac)—i—vEm Zm G +Zﬂt1’u’“( )e
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Due to equation (9) the outer terms cancel and one has

P = E ™ ik
i

Let m(3) denote the state probabilities as functions of the
decision rule. An alternative formulation of the minimization pro-
blem (8) is therefore

(10) # = Min Z (8) Fisyr
3
The representation (10) is advantageous, whenever the state
probabilities ean be obtained conveniently from the decision rule,
This will be illustrated in the case of the inventory problem.

2. -— The inventory problem [ef. 1] is characterized by transition
probabilities
(1) Pult) = pi4(t)
and costs
ity = @y independent of ¢
(2) b b0 k=i
t ¢ if k£4

Write f Z pult) ey tdt = fu
0 s
}

Here a; represents the expeeted storage and shortage cost T units
of time later conditional on a present inventory level of ¢; T is
the delivery time ; ¢ is the fixed cost of ordering. It can he shown
that the proportional cost of ordering which arises in any case, is
irrelevant [1],

Substitute (1) and (2) in (1.2) and {1.3) and obtain

3) o(i) + = Min[o - 3 + s + ZPH a().
A‘ .

Tiguation (3) corresponds to the Arrow-Harris-Marschak equa-
tion of optimum inventory policy [3]; the latter is, of course, in
terms of discounted expected cost.
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The well known theorem of Secarf[4] assures that under the
assumptions made the optimum decision rule is of the following
simple so-called ¢,3 type :

i i

F=1 g i

S
8§

A v

k]

where s is the reordering point and 8 = s is the optimum starting
stock. (Under less stringent assumptions the optimum policy may
involve multiple reordering points sy, s, ... 8n. But these cases are
not likely to arise in practice.)

In terms of this decision rule the inventory equation is

\c+fs+zpfv8—;) i

@) i)+ o—
’ft-l-ZPﬂ”—J P> s

Since the »(¢) are arbitrary up to an additive constant we may
set o(8) = 0.
Apply now {4} to »(S) repeatedly.

8—s5—1

(5) w(S) | 5= fs + Z i fog— 7 F

85—3—1 o
Z Zﬁ: oS —i— )] + Zf” [w(S) + ¢,
D,

A
o

i=1 i=5—s

Write S —s—1 =

) o0
Now Z]J; . Z]Jt oS —i—j) =

J—8—-1
ZP} Z pev(S—i—j) + wa ? pe . [0(S) + ¢}
i t —j—s
(6) = ‘*pm oS —5) F g [0S) 1 el

i=1
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where p® is the compound distribution of a total demand for j
on two occasions and g denotes the probability that the reorder
point is first reached after two oeccasions of demand.

Collecting terms in (6) we have

D
o(S) = fs + Z [ps + 277 fs
=0

+ (1 + g2) - [9(8) + €]

Continueing m this way we obtain
g y

D
) o) = — 0. > 0 2
=0

D
+ Z [P0 + P+ ) s

=0
+ i+ e+ .. oqn) e+ 0(S)]
1 i =0
There w . 2
where we have put pj % 0 i >

D)
Now ¢y = % [P — p,
j=1

It follows that

N b I
—
N
E In = % prso) — 2 P? )-
n==0 i=0 i=0

But if on each occasion demand is for at least one unit, the total
demand in one D |- 1 or more occasions exceeds D so that p{¥ = 0
for N > D and §=0, ... D. Hence

w bH

o

E Gu = E Pﬁ-m = ﬁ%}m =1L
—0 i—0

n
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Letting % —co in (7) the term #(S) therefore cancels out and

we have
D D
—
=-—17. Z 7" + Zz)?" fsr e
i=0 j=0
or
¢+ Z zp(n) fS -t
{8) ji= {) r=0
>
=0 n==0

A straight forward calculatlon shows that

o

_—)
2 _'PS'H}

2=0

b o
4
% E 1)?1)

i=0 n=0
is the state probability ms; i.e. the probability of finding the
system in state 3 — j at times immediately after a transition. For
J = 0, ms denotes the probability of the system being in state S
after a transition followed, if necessary by an order.

D
. _ 1 y
From Gn = g Py p
P}ZU

one obtains through summation by parts

Z . gy = Z ZP(M

n—I1 n=0 j=

Therefore (8) may also be ertten

ciZﬂ"’fw

(9) R= 0) o

Z nn

n=g
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The numerator of this expression lists all costs during a reordering
oyele, the denominator gives the average number of demand inter-
vals hetween sucecessive stock orders. ¥ is therefore average cost
per time if the unit of time is chosen as the average interval between
demands. (The choice of this or any other time unit of cowrse does
not affect the decision problem.) In view of the definition of f,

+

fi= J Z pt) L agdi
& .
}

an alternative expression for # may be given. Write

pli, £)
for the probability that at time ¢ accumulated demand since £ = 0
is 1 on the assumption that immediately previous to ¢ = 0 there
was a demand. Then the probability that the system is still in state
zero after time ¢ is the probability that the first demand oceured

at £ 4- O or later
®
Pp(0, ) = f Z plE) df.
40

il
AT oo

Now ‘ Z m(t) Al = —1 J Z]},(T) dr
Yo t =
i i
+ f j Z pil) dr dl
0 £ N
)

through integration by parts,

— "w rﬂ Zg);(t) dr dt
H

[

0

Yo vy

= f p{0, £) di
0

provided that p{t) > 0 as ¢t oo with sufficient rapidity.
Now let v denote the time since the last demand and £ = «
the time since the system was last started in state S. We then

have
o

Zp}-“’ (0, %)

=0

= p(J t).
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Expression (8) can therefore be rewritten as

i
c+ z g f plj, £ dt
=0 °
D o
D | pina
0

=0

(10) § =

This formula expresses average cost in terms of costs a; associated
with states j times their average duration. The cost ¢ of an order
is weighed with the reciprocal of the average time between such
orders.

The form of this expression suggests that it applies to the even
more general case of a stochastic process which is Markovian only
at those points where active decisions are taken, i. e. where a state
is changed through a decision, provided the costs a; associated
with a state per unit time are independent of time and the costs ¢
of a change of state are independent of the change. The probabilities
of finding the system in state j at a time ¢ p(j, {) are then well
defined provided time is counted always from the last active
decision,
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