AN ALTERNATIVE PROOF OF A PROPERTY OF THE RADON TRANSFORM ON THE HARDY SPACE H¹

C. CARTON-LEBRUN

1. INTRODUCTION

Let s^{n-1} denote the unit sphere in \mathbb{R}^n and R_{ω} be the Radon transform relatively to $\omega \in s^{n-1}$, i.e. the integral over almost every hyperplane $\langle x, \omega \rangle = t$.

In this note, we give a non-constructive proof of the following known property:

 ${
m R}_{_{
m W}}$ is a bounded surjective operator from the Hardy space ${
m H}^1({
m I\!R}^n)$ onto ${
m H}^1({
m I\!R})$.

The boundedness assertion is contained in [1] where it results from an atomic decomposition of H^1 functions. It is also included in [3] where it occurs as a corollary of an identity relating the Radon and Riesz transforms. A constructive proof of the surjectivity of R_{01} is contained in [3] too.

The alternative proof we give here is essentially based on duality arguments. In particular, it brings out the fact that the dual operator of $R_{\omega}: H^1(\mathbb{R}^n) \to H^1(\mathbb{R})$ is $B_{\omega}: g \to g(<\cdot,\omega>): BMO(\mathbb{R}) \to BMO(\mathbb{R}^n)$.

2. PROOF

By Fubini theorem, we see that

(
$$\pm$$
) $\int_{\mathbb{R}} g \cdot R_{\omega} f dt = \int_{\mathbb{R}} n B_{\omega} g \cdot f dx$

holds for every $f \in \mathscr{S}_{0}(\mathbb{R}^{n})$ and $g \in BMO(\mathbb{R})$, where

$$\mathscr{G}_{\mathbb{Q}}(\mathbb{R}^n) = \{ \mathbf{f} \in \mathscr{G}(\mathbb{R}^n) : /\mathbf{f} dx = 0 \} \text{ and } B_{\omega} \mathbf{g} = \mathbf{g}(\langle \cdot, \omega \rangle).$$

On the other hand, we notice the following facts:

a. $R_{\omega} f \in {}_{o}(\mathbb{R})$ whenever $f \in \mathscr{G}_{o}(\mathbb{R}^{n})$. This is an easy consequence of the identity relating the Fourier transforms of f and $R_{\omega} f$.

b. $\mathscr{G}_{o}(\mathbb{R}^{n}) \subset \operatorname{H}^{1}(\mathbb{R}^{n})$, $n \geq 1$. This results from 1emma 1.5 of [2]. Moreover, $\mathscr{G}_{o}(\mathbb{R}^{n})$ is dense in $\operatorname{H}^{1}(\mathbb{R}^{n})$ since it contains the dense subspace $\operatorname{H}^{1}_{o}(\mathbb{R}^{n})$ considered in [4], p 231.

Présenté par H. Garnir, le 26 avril 1984.

c. B_{ω} is a one-to-one bicontinuous map from BMO (R) into BMO (Rⁿ). Indeed, if $m_Q g = f_Q g$ dx, a straightforward comparison of the BMO norms of g and $g(<.,\omega>)$, defined as $\sup(m_Q|g-m_Q g|)$ over all cubes $Q \subseteq \mathbb{R}^n$, with n=1 and n>1 respectively, yields the required assertion.

From the above remarks, we first deduce that

$$\|\mathbf{R}_{\omega}\mathbf{f}\|_{\mathbf{H}^{1}(\mathbb{R})} \leq \mathbf{C} \|\mathbf{f}\|_{\mathbf{H}^{1}(\mathbb{R}^{n})} \qquad \forall \mathbf{f} \in \mathcal{G}_{0}(\mathbb{R}^{n}),$$

which implies that R_{ω} has a bounded extension on the whole of $H^1(\mathbb{R}^n)$. Moreover, owing to the boundedness of R_{ω} as an operator from $L^1(\mathbb{R}^n)$ into $L^1(\mathbb{R})$, this extended operator coı̈ncides with the usual Radon transform defined as an integral.

From (\star) , we next conclude that B_{ω} is the dual operator of R_{ω} . The surjectivity thesis is then a consequence of the Banach closed range theorem ([5], corollary 1, p 208).

Remark. If $N(R_{\omega})$ denotes the null-space of $R_{\omega}: H^{1}(\mathbb{R}^{n}) \to H^{1}(\mathbb{R})$, we notice that $N(R_{\omega}) = \{f \in H^{1}(\mathbb{R}^{n}) : (g(<.,\omega>), f) = 0 \quad \forall g \in BMO(\mathbb{R})\},$ $N(R_{\omega})^{\perp} = \{g(<.,\omega>) : g \in BMO(\mathbb{R})\}.$

3. REFERENCES

- [1] A.P. CALDERON, On the Radon transform and some of its generalizations, Conference on Harmonic Analysis in honor of Antoni Zygmund (edited by W. Beckner, A.P. Calderon, R. Fefferman, P.W. Jones); Wadsworth Mathematics series, Belmont, California, 1983, Vol II, 673-689.
- [2] E.B. FABES, R.L. JOHNSON, U. NERI, Spaces of harmonic functions representable by Poisson integrals of functions in BMO and £_{p,λ}; Indiana U. Math. J., 25, 2 (1976), 159-170.
- [3] M. FOSSET, Une identité relative aux transformées de Radon et de Riesz, Bull. Soc. Roy. Sc. Liège, 5, 1983, 319-322.
- [4] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
- [5] K. YOSIDA, Functional Analysis, 4th ed., Springer, Berlin New York, 1974.

Université de l'Etat à MONS Service de Mathématique Avenue du Champ de Mars, 24 B - 7000 - MONS BELGIQUE