AN ALTERNATIVE PROOF OF A PROPERTY OF THE RADON TRANSFORM ON THE HARDY SPACE H¹

C. CARTON-LEBRUN

1. INTRODUCTION

Let s^{n-1} denote the unit sphere in \mathbb{R}^n and R_{ω} be the Radon transform relatively to $\omega \in s^{n-1}$, i.e. the integral over almost every hyperplane $\langle x, \omega \rangle = t$.

In this note, we give a non-constructive proof of the following known property:

 \mathbf{R}_{ω} is a bounded surjective operator from the Hardy space $\mathbf{H}^{1}(\mathbf{R}^{n})$ onto $\mathbf{H}^{1}(\mathbf{R})$.

The boundedness assertion is contained in [1] where it results from an atomic decomposition of H^1 functions. It is also included in [3] where it occurs as a corollary of an identity relating the Radon and Riesz transforms. A constructive proof of the surjectivity of R_{01} is contained in [3] too.

The alternative proof we give here is essentially based on duality arguments. In particular, it brings out the fact that the dual operator of $R_{\omega}: H^1(\mathbb{R}^n) \to H^1(\mathbb{R})$ is $B_{\omega}: g \to g(<\cdot,\omega>): BMO(\mathbb{R}) \to BMO(\mathbb{R}^n)$.

2. PROOF

By Fubini theorem, we see that

(*)
$$\int_{\mathbb{I} \mathbb{R}} g \cdot \mathbb{R}_{\omega} f dt = \int_{\mathbb{R} \mathbb{R}} \mathbb{R}_{\omega} g \cdot f dx$$

holds for every $f \in \mathcal{G}_{0}(\mathbb{R}^{n})$ and $g \in BMO(\mathbb{R})$, where

$$\mathscr{G}_{O}(\mathbb{R}^{n}) = \{ \mathbf{f} \in \mathscr{G}(\mathbb{R}^{n}) : f \, d\mathbf{x} = 0 \} \text{ and } B_{\omega} \mathbf{g} = \mathbf{g}(\langle ., \omega \rangle).$$

On the other hand, we notice the following facts:

a. $R_{\omega} f \in {}_{o}(\mathbb{R})$ whenever $f \in \mathscr{G}_{o}(\mathbb{R}^{n})$. This is an easy consequence of the identity relating the Fourier transforms of f and $R_{\omega} f$.

b. $\mathscr{G}_{o}(\mathbb{R}^{n}) \subset \operatorname{H}^{1}(\mathbb{R}^{n})$, $n \geq 1$. This results from lemma 1.5 of [2]. Moreover, $\mathscr{G}_{o}(\mathbb{R}^{n})$ is dense in $\operatorname{H}^{1}(\mathbb{R}^{n})$ since it contains the dense subspace $\operatorname{H}^{1}_{o}(\mathbb{R}^{n})$ considered in [4], p 231.

Présenté par H. Garnir, le 26 avril 1984.