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A GENERALIZATION OF TIETZE’S THEOREM
ON LOCAL CONVEXITY FOR OPEN SETS

J. CEL

Abstract

Let S be a nonempty subset of a real topological linear space L and
s a point in clS. A point s of weak local C-convezity of S is defined
as follows: if there exists a neighbourhood N of s such that s €clCy,
where C, is a component of § N N, then [z,y] C S for each pair of
points z,y € Cs, otherwise [z,y] C S for each pair of points z, y in any
component of SN N. It is proved that an open connected subset S of
L whose boundary consists exclusively of C-wlc points of S is convex.
This is a version of the Sacksteder-Straus-Valentine generalization of
Tietze’s local characterization of convexity for open sets.
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Let S be a nonempty subset of a real topological linear space L. A point s in clS is said
to be a point of weak local convezity of S if and only if there is some neighbourhood N of
s such that for each pair of points z,y in SN N, [z,y] € S [2, Def.4.2]. A point s of weak
local C-convegity of S is defined as follows: if there exists a neighbourhood N of s such
that s €clC,, where C, is a component of S N N, then [z,y] € S for each pair of points
z,y € C,, otherwise [z,y] C S for each pair of points z,y in any component of SN N (cf.
[2, Def 4.5]). Furthermore [1],[2, Def.4.3], a point s in clS is said to be a point of strong
local convegity (C-convezity) if and only if SN N (each component of SN N) is convex for
some neighbourhood N of s in L. For the sake of brevity, we call points of weak and strong
local convexity (C-convexity) of S, respectively, wic and slc (C-wlc and C-slc) points of
S. (zyz) will represent the two-dimensional flat determined by three noncollinear points
z,Y, 2. .

Tietze's famous characterization of convexity states that a closed connected subset S
of L consisting exclusively of wlc points is convex {2, Th.4.4]. In [1], a generalization was
proved that a connected compact subset S of a complete locally convex real topological
linear space consisting exclusively of C-sic points is convex. In [3, Cor.2.3], the author
proved essentially that an open connected subset S of L whose boundary consists exclu-
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sively of wlc points is convex. The purpose of this note is to prove a generalization of this
result kept in the spirit of [1]. The straightforward argument differs from that in [3] and
thanks to the assumption of the openness of S is simpler.

Theorem. If S is an open connected subset of a real topological linear space L with the
boundary consisting ezclusively of C-wlc points of S, then S is convez.

Proof. Since S is open and connected, and L is locally starshaped [2, Th.1.4], an easy
argument reveals that S must be polygonally connected. For this, we fix a point zg
in S and consider the subset W of S consisting of points which can be joined to zg
via polygonal paths in S. The local starshapedness of S implies immediately that W is
simultaneously open and closed in S, so that it must coincide with connected S. Select
arbitrarily distinct points z,y of S. Let [z,y] € S. Hence, there exists in S a simple
polygonal path P = [zg,21] U ... U [2n, Zn+1)(n 2 1,20 = z,Zn41 = y) with the minimal
number n + 1 of nondegenerate line segments. Consider the subpath {zg,z;] U [z;,z,]. Of
course, the points xg, 1,z are noncollinear. By [2, Th.1.8], we can identify (zoz;z2) in
the topology induced from L with the Euclidean plane R?. Without loss of generality,
assume that z; is the origin of L. Since [z, 23] is compact and S N (zo7;7,) is relatively
open in (zoz1z2), there exists a relatively open circle B in (zoz122) centered at z, such
that [z;,22] + B € S. If 29 € B, then [z9,32] € S and P can be replaced by a path
consisting of n line segments , a contradiction. Denote thus (¢,z;1] = B N [zo,z;]. Then
conv((t,z1]U[z1,22]) € S. Since S is open, there is a point z{, € S such that z¢ € (z},z;).
Suppose, to reach a contradiction, that conv({zy,z1] U [z1,22]) € S. Then there exists
the largest subsegment (w, z:1] of [z4, 1] such that conv((w,z;] U [z1,22]) € §. Suppose
that [z2,w] € S. Since z; + B C S, there exists a largest subsegment [z2,u) of [z2,w]
contained in S. u € bdryS, so that, by initial assumption, u is a C-wlc point of S.
Consequently, there exists a relatively open circle D in (zoz;z2) centered at u such that
for the component C, of D NS for which u € clC,, if p,q € C,, then [p,q] € §. Pick
out a point a € D N(z2,u). @ € S and S is open, so that there is a relatively open circle
D, in (zoz13) centered at a and contained in DN S. D, and DN conv((w,z;] U [z;, z2])
lie in the same component of D N S having v in its closure, so that by assumption u €
conv{ Dy U(DNeconv((w, z1]U[z1, 22]))) C S and the segment [z, u) can be extended beyond
u in §, a contradiction. Hence, [22,w] C S. But S is open and [z2,w] is compact, so that
there exists a point w' € (zg, w) such that conv({w', z;]U[z1, z2]) C S, contradictory to the
choice of w. Hence, (7o, z2] C conv((zg,z1] U [z1,%2]) € S. Thus we can replace the path
P by the path [z, 22]U...U[2n, Znt1) consisting of at most n line segments, contradictory
to the choice of P. Hence, [z,y] C S and S is convex, by the arbitrary choice of z,y.
The proof is complete. O

It is still an open question if the assumptions of the theorems in [1] (cf. {2, Ths.4.5 and
4.6]) can be weakened in any way.
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