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TIETZE-TYPE THEOREM FOR PARTIALLY CONVEX
PLANAR SETS

J.CEL

Abstract

Let S be a nonempty subset of R? and V C R? a set of directions. §
is called V-convez or partially convez relative to V at a point s € clS
if and only if there exists a neighbourthood N of s in R? such that the
intersection of any straight line parallel to a vector in V with SN N is
connected or empty. S is called V-convez or partially convez relative to
V if and only if the intersection of any straight line parallel to a vector
in V with S is connected or empty. It is proved that if V is open, S
is connected and open or polygonally connected and closed, and V-
convex at every boundary point, then it is V-convex. This contributes
to a recent work of Rawlins, Wood, Metelskij and others.

Key words: pazrtial convexity, Tietze-type theorem.
1991 Math.Subj.Classif.: 52A01, 52A20.

Let S be a nonempty subset of R? and V C R? a set of directions. ¥ may be understood
as a set of endpoints of unit vectors issuing from the origin. S is called V-convez or partially
convez relative to V at a point s € clS if and only if there exists a neighbourhood N of s
in R? such that the intersection of any straight line parallel to a vector in V with SN N
is connected or empty. S is called V-convez or partially convez relative to V if and only if
the intersection of any straight line parallel to a vector in V with S is connected or empty
[71,19],[10]. (zy) will represent the straight line determined by two distinct points z,y, and
(zy): the closed half-plane determined by (zy) and containing the point z ¢ (zy).

The application of convexity theory to various practical problems led to the exploration
of nontraditional notions of convexity such as orthogonal convexity [5], finitely oriented
convexity {2]-[4],[6] and, finally, partial convexity relative to an arbitrary set of directions
[7}-{10]. These nontraditional convexities have been used in digital picture processing,
locked transaction systems, VLSI design, motion planning and other areas. Basic proper-
ties of partially convex sets such as connectedness, simple connectedness and separation
properties have been recently systematically investigated in [6],[7],[9] and [10]. It is the
purpose of this paper to add yet another property to that list. We prove, roughly speaking,
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that a planar set which is locally V-convex at every boundary point is necessarily globally
V-convex. The first such local versus global result involving usual convexity is due to Ti-
etze [1,Th.4.4]. For further recent developments in Tietze’s theorem the reader is referred
to [11,Cor.2.3],{12] and {13].

Theorem. Let V be an open set of directions in R If S is an open connected or closed
polygonally connected subset of R?, V-convez at every boundary point, then S is V-conver

Proof. Select an arbitrary straight line { of direction in V having a nonempty intersection
with S. Let = and y be arbitrarily chosen distinct points in [N.S. We claiin that the line
segment {z,y] € S in both specified cases.

Let us consider first S open and connected. An easy argument reveals that S is polyg-
onally connected. Hence, there exists in S a simple polygonal path P = [zo,2;]U.. U
[Tn, Tat1}(zo = 2, Zny = y) with the minimal number N of nondegenerate line segments
not pazallel to I. If N = 0, then we are done, so that let in the sequel N > 1. As com-
pact P has a point p farthest from [. Of coutse, p ¢ . Suppose first that p € [k, T4,
where 1 < k < n, with [zk,zk+1] parallel to [. The other case when p = z; for some
1 £ I < n, with none of segments [z;—1,z1], [zi, z141] parallel to { will be briefly discussed
as second. One can assume, without loss of generality, that [zx—_y1, 2] and [zk+1, Tkt2] are
" line segments not parallel to [. To fix attention assume that dist(zx-,!') < dist(zg42,!"),
where ' = (zrr41). If the converse inequality holds, the argument proceeds similarly.
We claim that [zk-1,2}_;] € S, where @} _; = [Tk41, Th42] N (wk-1 — @ + ). Define a set
Q = {2 € [xr—1,z%] : conv{z, Tk, Trt1,2'} C S}, where 2’ = [zrq1, 242 NV (2 — 21 + 1)
We will show that @ is a set simultaneously open and closed in [zk—1,zr]. That @ is
relatively open in [zx—1, z«] follows immediately from the openness of § and the compact-
ness of [z,2’]. To prove that it is relatively closed in {zx_1,z] suppose that (zg,2¢] C Q
for some point zp € (zx—1,2x). We have to show that [z9,25] C S. Let {20, w0) be the
longest subsegment of [29,zy] contained in S. By assumption, S is V-convex at wy €
bdryS, so that one can select an open ball By, centered at we such that By, N(zp2y), C
conv{zg, Tk, Tk41, 24} and the nonempty intersection of any straight line parallel to a vec-
tor in V with § N By, is connected. Moreover, there is an open ball B,, C SN By,
centered at a point u, € (29, wo) N By, wo & Bu,. Let By, be a ball symmetrical to By,
with respect to wo. Consider the set of straight lines determined by wp and points of By,N
conv{zo, Tk, Tk+1,24} C 5. Since V is open and the direction of (z925) belongs to V, there
must be a point v € By, N conv{zg, Tk, Tk+1, 24} such that the direction of (wgv) lies in V.
Consequently, wo € S, contradictory to the choice of {29, wg), by virtue of the openness of
S. Hence, (20,2} € 5, that is Q is simultaneously relatively open and closed in [zx—1,z4]
As nonempty, since zx € Q, it must coincide with [zk_1, zx]. Now replace P by the polyg-
onal path P" = [zo,21] U ... U [zx—2, 2 —1] U [@x—1, 241} U [@h 1 Tra2] U . U [T, Tnga ] TE
joins .z with y and may not be simple, but contains at most N —1 line segments not parallel
to I'. Moreover, it contains a simple polygonal subpath P” joining © with y also with at
most N — 1 line segments not parallel to [, contradictory with the choice of P. It remains
to consider the case p = z; for some 1 < [ < n, with none of segments {z;_1, zi}, [z1, 2141]
parallel to [. Again, assume that dist(z;—;,l') < dist(zr41, '), where U is the straight line
parallel to [ through z;. By the openness of S, there is a line segment {29, 2] € 5 with
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conv{zg, 1,2y} C S, where 2o € [zi—1,%1),25 € (x1,2i41], which is parallel to . Arguing
as above we indicate a simple polygonal path P" joining z with y and made of at most
N —1 line segments not parallel to I, again a contradiction. This proves the case of S open
and connected.

Now let us consider S closed and polygonally connected. As before let P = [2¢,2,]U...U
[ZryTnt1)(zo = &,2a41 = y) be a simple polygonal path in S with the minimal number
N > 1 of nondegenerate line segments not parallel to [, p a point of P farthest from L
First, let p € [z, zr+1}, where 1 < k < n, with [zk, 2x41] parallel to [ and, without loss of
generality, (zx~1,2k] and {Tr+1,Tk+2] not parallel to [, and dist(zry, ") < dist(zg42, 1),
where I' = (gxzr41) Define a set Q = {z € [zx—~1,2s] : conv{z,zk,z441,2'} € S}, where
2" = [zg41, Tht2] N (2 — 2k +1). By the closedness of S, @ is relatively closed in [zz—1, z4].
We claim that it is also relatively open in [zx—_1,z&]. Select any point zo € Q) together with
an associated point zj. Observe first that, by the assumption, there are open balls B,,
and B, centered at 29 and z;, respectively, such that B, N (%k—-1%k)zsyy N (2020 )axr & S
and By N (Zk+18k+2)z4y N (2029)2,_, & 5. Suppose, to reach a contradiction, that @ is
not relatively open at zg. By the observation just made, there exists a point wy € (2, zg)
such that for every open ball By, at wo we have By, N(Tk-1Tk)eoyr; N(2020)zs-y € S Let
w € (20, wo] be the point with this property lying closest to zo. By assumption, § is V-
convex at w € bdryS, so that there exists an open ball B,, at w such that the intersection
of any straight line parallel to a vector in ¥V with § N B,, is connected or empty. It follows
from the choice of w that there is a point u € By, N (w, z) with an open ball B, at u
such that By N (202))s,., C 5. The V-convexity of S at w and [2,2,] € S imply the
existence of an open ball B}, at w for which B}, N(202))z,., € 5, a contradiction. Hence,
S is simultaneously relatively open and closed in [zk—1,k], and, by virtue of = € @Q,
also nonempty, so that it must be = [zx_1,zx]. The rest of the argument consisting in
an appropriate modification of P to reach a contradiction proceeds as in case of S open
and connected. Finally, the case of p = z; for some 1 < | < n, with none of segments
[zi=1, 1], [1, z141] paralle]l to | is analysed as above.

The proof is complete. O
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