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ABSTRACT,

In this paper an integral transformation introduced by Ch. Fox is
extended to a certain spaces of generalized functions. Boundedness, smoothness
and inversion theorems are established for the generalized transformation.
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1. Introduction . The integral transformation defined by

F(y) = Hg(fC)(y) —J f(x)(xy)‘”J Eﬁlu(uxu (uy)dudx

o0
where E(u)=] [(1+u2an'2), a, is real for all nonnegative integer values of n,

n=1
o0

and E an'2 is convergent, was introduced by Ch, Fox {2} who established the
n=1

following inversion formula.
Theorem 1 (f2]) : Let ng If f(x)eLl(O,oo) and it is of bounded

variation in a neighborhood of x=y, then the integral transform

- 12
F(y) = Jof(x)(xy) '{ E—(—jJ {ux)J (uy)dudx
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is inverted by the differential operator

T T (a8, JF(y) = J(6(y+0)+i(y-0))

no=t
where S%Y denotes the differential operator y'i‘t'(1/2)D3(2I”"+1Dy'u (172),

Our main objetive in this paper is to extend the classical HE
transformation to generalized functions. We extend the inversion formula due
to Ch. Fox {2]) (Theorem 1) to certain spaces of generalized functions, Other
form of Hankel convolution was defined on distributions by J.N, Pandey (8]
The spaces of J.N. Pandey are different 1o the ones introduced by us herein.

The notation and terminology of this work will follow that [9] and {15].
I denotes the open interval (O,c0) and all testing functions herein are defined
on L If f is a generalized function on 1, the notation f(t) simply indicates
that the testing functions on which f is define have t as their independent
variable, <f(1),0(t)> denotes the number assigned to some element $(t) in a
testing function space by a member f of the dual space. Finally D(I) is the
space of infinitely differentiable functions defined on I having compact
support. The topology of D(I) is that which makes its dual the space D*(]) of

Schwartz distributions.

2. The testing function space Tu and its dual Ti’l . Let u be a fixed real
number. We define 'I‘“ as the collection of infinitely differentiable complex

valued functions ¢(t) defined on I such that

k
% (@ = :21{31 E(x)S,, ()| < e

for each k=0,1,2,... , where &(x) is a nonnegative regular function defined on

I such that 1im &(x) = lim &(x) = 0.
x>0 X300

We assign to Tu the topology generated by the seminorms wkioi::O' thereby

making it a countably multinormed space [15]. The dual space TL.L consists of
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all continuous linear functionals on T, . T is also a linear space to which we

bR
endowed with the weak topology generated by the multinorm [nq)}, where
ﬂ¢(f)21<f,¢>| and ¢ ranges through TP-'

It is obvious that the space D(I) is contained in T, , and the topology of

u!
D(1) is stronger than that induced on it by TP-' Hence the restriction of any f

€ T;l to DI} is in D'(1),

1

B

Next, we give a structure formula for the resiriction of an element of T
to D(I).
Proposition 1 : Let f be in TL!J.' Then there exist essentially bounded

measurable functions gi(x) defined for x>0, for i=0,1,2,...,r, where r is some

nonnegative integer depending on f such that for an arbitrary ¢ € D(I) we have
S o M
<tg> = <} S, EEDg (0)0(x)>
m=0 *

PROOF: By virme of {15, Theorem 1.8-1] there exist a constant C>0 and a
nonnegative integer r depending on f such that for all ¢ € D(I)

<f,¢> < Cmax Y () S C max suplé{x)S ¢(x)t g

S kST osxsr xel
< C max sup j IDEOS,, Kp(o)[dt < C max 1DEW®S,, q)(t))uk (1)
0<xsr xel 0 kST
where |l 0 denotes the norm in the space L](O,W).

Hence, if we define the mapping

T:D(I) ———— TD()cL (0,)x." " ! .xLI(O,oo)=(L1(O,°o))”'

b —— T(O) = P EWS, N,
according to {1), the mapping

T ———— ¢
k '
(DEMS "0, , — <fp>
is linear and continuous when TD(I) is endowed with the topology induced in it

by (LI(O,w))m. By using the Hahn-Banach theorem J can be continuously
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extended to (Ll(O.oo))”'. Moreover, by taking into account that the dual of
LI(O,M) is equivalent to L_(0,0) (see F. Treves (11]) there exist essentially

bounded measurable functions g m(x) defined on I, m=0,1,2,...,r satisfying

<to> = | <8, 00.DEWS,"h()> =
m=0

= < § 5, "EOICDIE ) 400>, for every ¢ € D)

This completes the proof of Proposition 1.

One can easily check that if f(x) is a function on I such that

I‘”lf(i)[jx < o
0

then f(x) generates a regular generalized function on Tu defined by

0

<> = j Fx9(x)dx, ¢ € T,
0

Proposition 2 : If uz-i, then

K(x.y) = (xy)‘”L E—l(iﬁjlu(ux).l“(uy)du

as function of x, is in TH’ for every y € L
PROOF : By using the relation

12 T
Suz Ju(z) = -z JH(Z) (2)

we can deduce that

m ~ D -
Sli» xK(x.y) = SHTXJO E_(G}(Ux)m}“(ux)(ub‘)mju(“y)du =

o0 2m
- (.1)"‘Jo E%ﬂ(ux)'ﬂlu(ux)(uy)mlu(uy)du
for every m € M.
Hence, since szu(z) is a bounded function for ze (0,e°) provided that

;.12-%, one has

A 2m

m u
K(x, d °a
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for every meN, where C is a suitable positive constant.

‘Therefore K(x,y) € T

W for y € 1, when ;)2;

3. The generalized HE transformation, Throughout this section we assume
that pZé For f e TL'L we define the generalized Hp transform by ihe relation

F(y) = (Hgh(y) = <f(x),K(x,y)> , y>0 €))

Here K(x.,y) is defined as in Proposition 2.

Notice that (3) is well defined according to Proposition 2. Moreover, if
f generates a regular distribution then the generalized Hg transform of f
reduces to the classical HE transform of f.

In the sequel we establish boundedness and smoothness properties for the
generalized HE’ transformaltion,

Proposition 3 : Let f € TL'l. The generalized Hy ransform HEf of fis
bounded on L.

PROOF: By virtue of [15, Theorem 1.8-1] we have that
[HeD| < € max 4 (Kxy)) . y>0
0 Sx<r

for certain nonnegative integer r and C>0,

Therefore,

k | w
[(Hgf)(y)ISCOrgi:-;r i:};!&(X)Sp‘x((xy) L ETETJ:J(“X)IH(“”“);S

g 2m
<C max u du, for y>0
‘oémsjo E(w)

where Cl is a positive constant.
Proposition 4 : Let F(y) be the generalized HE transform of f. Then F(y)
is infinitely differentiable on I and

n n
4" Ry) = <f0.2 K(x,y)> , for yel and n & O
dy" ay"
PROOF: We only prove the assertion for n=1. The proof for other values of
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n can be done in a similar way.
Let h be an arbitrary increment in y. Without any loss of generality

assume 0<|h[<§. Now
F(y+h)-F(y) _ <f(x),K(x,y+}I:)-K(X.¥)>

Let ﬁh(x.y) denote the expression

Kixy+h)-K(y) %K(X-Y)

We will show that 6h(x,y) converges to zero in T}J, as h20. Our result will

then follow from the continuity of f(x), Now, for any nonnegative integer k

&(K)Sp}fxﬁh(x, y) =
k thov a2 < @
— 1 f 12 ]
= (-1 ﬁ(x)ﬁjj du J Sp2((1x) J'OWV J (el (viydv)dt

By using wellknown properties of Bessel functions we can deduce from (4)

that 1im £(x)S, X 0, (x,y) = 0 uniformly in xe (Oye0).
h+0 pxTh

We now extend the inversion formula stated in Theorem 1 ([2]) to T!l

interpreting convergence in the weak distributional sense.

Theorem 2 : Let f & T’.’L and let F(y) be the generalized HE transform of f.

Then for each ¢ € D(I),
bim <[ (1,78, DR, 9(9)> = <€x).6(x)>

n3ee o=l
PROOF: Let ¢ be in D(I). According to standard definitions, one has

n n
1-a, %8 F(y), = <F(y), l1-a, 2
<TT (a8 R, 00> = <FOMTT ("8, o>
for every n € N,
By virtue of Proposition 3, F(y) generates a regular distribution in

D'(I), hence we can write

n b n
1-— '2S F s = F 1_ -ZS d .
<TT (S, FO). 60> ja O] T U2y s, ey

where O<a<b<e and the support of ¢ is contained in {a,b].
We now prove by making use of Riemann sums that
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b n
[ FOTT (-a7"s, Do(dy =
a k=1
) ()
= <f(). [ TT (- "8y, KISy
a k=t !

In effect, if {y, m§$=e are partitions of the interval (a,b) such that

4 =YymYv-1,m (v=1,2,...,m) tends to zero as m-ee, then

b
[CTT (a8, JEOMy =
a =1 ’

n

= limd_ VZ TT (1'“k'zsu,y\,m)(p(yv»m))q)(yv,m) =

[E i i k=1

= lim <f(x)d & (l-a 23 WKy, Doy, »>
moeo m V);i 1—:!- % P.;yv'm Vm Vym

Therefore we have to see that

. A 2 -
r}]_l){].: dm VZ E (l‘ak S“,yvm)(K(x!yV,m))d’(yv‘m) -

b
= [ TT Gy YKy

4 k=1

in the sense of convergence in TLl'
Notice that for every /€ W,

b n
geof TT (-2, )8, £ (KO DBYY -

- V4
R e R

(6)

for a certain C constant. Hence, given an £>0 there exist two real numbers XE

and X2 (XI<X2) such that the left hand side of (6) is less than & provided
that xe (O.Xl)u(Xz,oo).

Moreover

=1k=1

£, | TT 0y, 08, 50K, R0y,

converges to

b a
sof TT (1-4,S,, )8, {(KGay by ©

k=1
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uniformly on every compact subset of I, as maes, because the integrand in (7)
is continuous, and therefore uniformly continuous, on each compact,
Hence {5} is proved,

To finish the proof of this theorem we must prove that

b on
lim [ TT (a8, KGNy = 600 (®)

fivee " a k=i
in the sense of convergence in TM'

For every Je N, we get

b s
Z 2 _
Sux | TT s, Jtes)ay =

b oo
_ "2 u ¢
= | G0 gy o andus,, ey

where E_(u)= T7 (1+u2ak'2), because according to (2) Su,xK(x’Y):Sp,yK(x’y)‘

k= n +i

By Hankel’s theorem {12,514.4],

S Lo00 = [ o™ Geupdul (', (S, £ oty
MCCRICENCD uf o' S, Setr)dy
for every x € 1.

We now define as in [2, pp. §84],

b
POcw) = (o) (oo ) 08, @My

and

b
P, () = E—}m(xu)%(xu)jatyu)'”Ju(yu)s“

n

£

‘y(fii(y))dy

Then, to prove (8) it is sufficient to see that
sup|E()f (P(x0)-P (xa)duf — 0 %
xel o

as n-eo,
By invoking (15, p. 139}, if ® € D(I) then
[ o™ e
0 u
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is an absolutely integrable function on I and one has

j?mmmsCﬁJFW%pmgwmmw
for a certain C constant independent of x. Hence, given an €>0 there exists
UO>0 such thazz

L|P(x,u)gdu < ‘;* , for every Z>Y>Uy and x & 1 (10)

On the other hand, by applying the second mean value theorem and by (10)
we can deduce
Z .
€
[jYPn(x,u)dul <$ (i1
provided that U0<Y<Z, x € I and nen,

Finally, for every n € N

U
IJO"(Pn(x,u)-P(x,u))du; <

U oa
< [ Ot - 25 y)S. aly)dyld
s [ heg - U] e s, eyl
and, by virtue of Lebesgue dominated convergence theorem, there exisls ng € N
such that

|jU°(Pn(x,u)-P(x,u))du1 <% (12)
0

for every n>ng and for xel,
By combining (10), (1) and (12) we can establish (9).

Thus, the generalized inversion formula is proved,
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