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Abstract

Recent research suggests a correlation between the variability and intrinsic brightness of quasars.
If calibrated, this could lead to the use of quasars on the cosmic distance ladder, but this work is
currently limited by lack of quasar light curve data with high cadence and precision. The Python
photometric data pipeline SunPhot is being developed as part of preparations for an upcoming
quasar variability survey with the International Liquid Mirror Telescope (ILMT). SunPhot uses
aperture photometry to directly extract light curves for a catalogue of sources from calibrated
ILMT images. SunPhot version 2.1 is operational, but the project is awaiting completion of

ILMT commissioning.
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1. Introduction

The International Liquid Mirror Telescope (ILMT) is a new 4-metre liquid mirror telescope
located at Devasthal Peak (79°41'07.1”, +29°21'40.4”, 2378 m; Kumar et al., 2018) in north-
ern India. It is the only liquid mirror telescope currently in operation and uses a stabilized
rotating container of mercury instead of a glass surface as a parabolic primary mirror. The cost
of this type of mirror is much less but has the limitation that the telescope is fixed in a vertical
orientation. Using time-delay integration, where electrons are shifted across the CCD at the
sidereal rate, the ILMT obtains 102 second exposures of a 22-arcminute wide strip of sky.

The ILMT saw first light in April 2022 and collected engineering data until the summer
monsoon closure from June through early October. The climate and remoteness of the site have
been obstacles in the commissioning, and the onsite team are continuing to work on the focus
and mirror balance to improve image quality. In the meantime, a data pipeline for an ILMT
quasar survey is being developed.

Quasars are the most luminous objects in the known universe and emit extreme amounts of
energy comparable to that of entire galaxy clusters. Recent research suggests a linear correlation
between the absolute magnitude of quasars and the characteristic rate of variation in their light
curves (Solomon and Stojkovic, 2022). The characteristic variational rate is the most common
slope found in the light curve, using linear fits to a moving window and corrected for cosmo-
logical time dilation. Establishing and calibrating such a link could extend the cosmic distance
ladder to as far as quasars can be observed, and contribute to cosmological measurements such
as Hy.

Studies of quasar light curves are limited by available data, of which there are two types.
Gravitational microlensing experiments observe dense star fields in the Magellanic Clouds and
Galactic centre as frequently as multiple times a night. They have produced several hundred
high-cadence, decade-long light curves for quasars found in these fields. These are of the high-
est quality, but are very limited in quantity and in sky coverage (Geha et al., 2003; Koztowski
et al., 2013). The second type is extracted from long-term surveys and transient searches, which
produce hundreds of thousands of lightcurves using facilities like the Catalina Real-time Tran-
sient Survey (CRTS) and Zwicky Transient Facility (ZTF). These achieve limiting magnitudes
of 20-21 (Djorgovski et al., 2011; Graham et al., 2019) using moderate (~ 1.5 m) sized tele-
scopes, but their sampling intervals range from as little as a few days to sporadic.

2. Preparations for the Upcoming ILMT Quasar Survey

4939 confirmed quasars from SDSS (Sloan Digital Sky Survey) DR16Q (Lyke et al., 2020)
are located in the ILMT field. The SDSS catalogue was chosen over the Milliquas catalogue
(Flesch, 2023), which contains twice as many quasars, because of the universal availability
of magnitudes in SDSS bands and good overlap with the ILMT field of view. These can be
imaged nightly (barring weather and season) in SDSS g/, 7/, or i/, with no competition for time
with other science campaigns. At the same time, its 4 m aperture and 102 s exposures would
let it exceed the depth achieved by CRTS and ZTF. According to estimates of ILMT limiting
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Table 1: Limiting magnitude of the ILMT esti-
mated in each photometric band for a point source
in an aperture of 2.5” radius (conservative estimate).

Estimated ILMT Limiting Magnitude

SNR g r i
10 22.201 21.833 21.337
20 21.436 21.076 20.582

magnitude in Table 1, 95% of the relevant quasars can be imaged by the ILMT at a signal-to-
noise ratio (SNR) of 10 or greater, and half at 20 or greater. Such precision allows for finer
measurement of quasar variability.

2.1. SunPhot

SunPhot (rhymes with “sunspot”) is a Python photometric data pipeline being developed at
UBC to extract light curves directly from calibrated ILMT images and make them available for
study. The source code, as well as detailed documentation of version 2.1 which is current at the
time of writing (Sun, 2023), are available from the corresponding author upon request.

SunPhot accepts images that have been astrometrically and photometrically calibrated (the
OCS software package (Hickson, 2019) is recommended for this purpose), together with a cat-
alogue of sources of interest. The light curve of each successfully measured source is output in
CSV table format and PNG image format (Fig. 1). The lightcurve contains imaging times, flux
in linear units and magnitudes with uncertainties, SNR, imaging band, and flags for measure-
ment irregularities.

A graphical photometry panel (Fig.2) can be produced for each measurement if human
review is necessary, but this is very resource-intensive. The text at top contains the catalogued
name of the source, pixel coordinates and image where the source was found, measurement
status, SNR, measured flux in electrons and SDSS magnitudes, and the catalogued magnitude
of the object if available. The six plots are various representations of the observed point spread
function (PSF) of the source. If the PSF was successfully fitted, the fit and parameters will also
be shown.

3. Discussion

As the image quality of the ILMT improves, development of SunPhot will focus on reduc-
ing aperture sizes and implementing photometric calibration and PSF measurement. When the
image PSF is well characterised, the aperture does not need to include all of the flux from the
source, as the missed flux can be extrapolated with a higher overall SNR. A mathematical de-
scription of the PSF also allows flux measurements using the PSF fit method, which is generally
more precise than aperture photometry.
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Lightcurve for NGC 129 100, G = 14.75
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Figure 1: Sample of SunPhot lightcurve for the star NGC 129 100 using
data from the Plaskett telescope (not ILMT). The top panel is the raw
ADU count, and bottom panel shows calculated r' magnitudes using
OCS for photometric calibration. The variations in the electron counts
are caused by cloud passages and are mostly mitigated once converted
to magnitudes. The star is not known to be variable.

A challenge of performing photometric calibration on TDI images is that different parts of
the image are captured at different times since the RA direction also functions as a time axis.
In less-than-ideal atmospheric conditions, this variation dominates the uncertainty in the OCS
photometric calibration. Under clear skies, the uncertainty is instead dominated by OCS’s use
of the Gaia catalogue for calibration. Gaia provides a conversion between Gaia magnitudes and
colours and SDSS magnitudes, which is a best fit to the observed data but has significant scatter
(Riello et al., 2021). However, the exact relationships differ for different types of stars, and
even more so for quasars versus stars. For ILMT surveys, a catalogue of photometric standard
sources is desired. Ideally, these are sources that have a known, consistent brightness. The
brightness must be known either in SDSS bands, or in Gaia bands with a known conversion
for that type of star. The catalogue should contain enough sources so that multiple calibration
sources can be found close enough in right ascension to any imaged quasar.

As of March 2023, ILMT images taken under clear sky conditions have a FWHM between
2 and 3 arcseconds. This is primarily caused by a small wobble in the mirror rotation, which is
being corrected by the technical team onsite. This effect manifests as a flattening of the PSF.
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Found 003332.85+292115.5 at (631.8, 23883.4) in 20221101-0024 fits.
Ident status success, SNR 24.0 for 54904.21 electrons.
Calculated SDSS r prime magnitude 19.88 pm 0.04. Catalogued r'=19.39.
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Figure 2: Sample of SunPhot photometry panel with various graphical
representations of the source PSF, and measured source characteristics

in text form. Subject is quasar J003332.85+292115.5 in SDSS DR16Q,
as imaged by ILMT.

From the preliminary data, an SNR of 10 is typically achieved at around magnitude 20.3 in the
' band, which is already on par with CRTS and ZTF abilities. This is not the result of a formal
analysis. Once the PSF and aperture sizes are reduced, the ILMT appears to be on track to
achieve the limiting precision in Table 1.
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